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Abstract. Recent results in pattern recognition applications have shown that
SVMs (Support Vector Machines) often have superior recognition rates in
comparison to other classification methods. In this paper, the cooperation of
three SVM classifiers for handwritten digit recognition, each using different
feature family is examined. We investigate the advantages and weaknesses of
various cooperation schemes based on classifier decision fusion using statistical
reasoning. Although most of the used schemes are variations and adaptations of
existing ones, such an extensive number of cooperation schemes have not been
presented in the literature until now. The obtained results show that it is diffi-
cult to exceed the recognition rate of a single, well-tuned SVM classifier ap-
plied straightforwardly on all feature families as a single set. However, the
classifier cooperation reduces the classifier complexity and need for samples,
decreases classifier training time and sometimes improves the classifier per-
formance.

1 Introduction

Combining features of different nature and the corresponding classifiers has been
shown to be a promising approach in many pattern recognition applications. Data
from more than one source that are processed separately can often be profitably re-
combined to produce more concise, more complete and/or more accurate situation
description. In this paper, we discuss classification systems for handwritten digit rec-
ognition using three different feature families and SVM classifiers [1]. We start with
a SVM classifier applied on all feature families as one set. Further, we used three
SVM classifiers that work on the different feature families for the same digit image.
As the feature sets “see” the same digit image from different points of view, we ex-
amined the possibility of decision fusion using statistical cooperation schemes. An
extensive number of cooperation schemes were examined and corresponding recog-
nition results are presented. Our aim was not to compete with the recognition rates of
the other handwritten digit recognition systems e.g. [2], [3], but to compare the quali-
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ties of different feature families, corresponding SVM classifiers and their com-
bination based on different classifier decision fusion.

The presented results show that it is difficult to achieve the recognition rate of a
single optimized SVM classifier applied on the feature set that includes all feature
families. However, the cooperation of individual classifiers designed for separate fea-
ture families reduce the classifier complexity and need for training samples, offering
better opportunity to understand the role of the features in the recognition process.

2 The System Architecture

The recognition system is constructed around a modular architecture of feature ex-
traction and digit classification units. The preprocessed isolated digit images are input
for the feature extraction module, that transfers the extracted features toward SVM
classifiers (see Fig. 1).
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Fig. 1. The system architecture

Each image is centered in a square bounding box, and then slant correction is per-
formed. The slant angle is estimated as the inclination of the line connecting the grav-
ity centers of the top 25% part and the bottom 25% part of the image. Then a sub-
pixel precision shear transformation is performed in order to remove the estimated
inclination.

3 Feature Extraction

Three feature families were extracted from each digit image:
e contour profiles,
e ring-zonesand
e Kirsch features.
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Feature extraction was performed on the original unscaled images, after the slant
correction.

The first feature family (FS1) is composed of 30 contour profile features (see Fig.
2). The image is scanned from left to right, top to bottom, right to left and bottom to
top, respectively. The distance from the corresponding edge of the image to the first
black pixel which the scanning line intersects, represent the contour profile feature on
the first level. The distance to the first black pixel in the second black pixel run repre-
sent the contour profile features on the second level. Since not all of the character im-
ages were of the same size, the profile vectors were linearly rescaled in order to ob-
tain 6 features from the left and right contour profiles and 5 features from the upper
and lower profiles on the first level of the digit image. Finally, 4 features were ex-
tracted from the upper and the lower contour profiles of the second level.

Fig. 2. Contour profiles of first and second level

The second group of 44 features (FS2) are extracted as pixel counts in rings zones
around the gravity center of the image (see Fig. 3). We have used three rings, each
divided in different number of equal zones. The outermost ring has a radius r equal to
the distance from the gravity center to the furthest black pixel of the image. The first
ring with radius 0.2-r provides 4 features and the second ring with radius 0.5-r pro-
vides 24 features. The last 16 features are provided from the outermost ring.

s &

Fig. 3. Ring-zone features

The last group of 72 features (FS3) use Kirsch operator [4] to detect local direc-
tional information of the edges of the input pattern. Compared with chain code which
also describes the edge direction, Kirsch edge detection is more robust even under
noisy conditions.

The first black pixel which the scanning line intersects forms the first outermost
periphery. The second black pixel which is the starting point of the second black
pixel run forms the second outermost periphery (see Fig. 4). When the image is
scanned in horizontal direction, the vertical and both diagonal Kirsch features are
extracted at the outermost periphery. When the image is scanned in vertical direction,
the horizontal and both diagonal Kirsch features are extracted at the outermost and
second outermost periphery. This way, 3 Kirsch directional features are provided for

25



each periphery pixel. The feature vectors are again linearly rescaled to 15 features
coming from the left and right periphery each, 12 features coming from the first out-
ermost top and bottom periphery each, and 9 features coming from the second outer-
most top and bottom peripheries.

first rightmost . .
topmost v pgriphery I.J -...--..'
periphery I_. - -
second s T .
leftmost topmost .j' g -
periphery periphery . o -

Fig. 4. Kirsch features

Kirsch feature extraction is performed on the grayscale digit images using sub-
pixel precision. All parameters including the number of features by projection, the
radiuses of rings for zone-pattern regions and the number of features coming from the
outermost peripheries for Kirsch features are carefully chosen after several iterations
using observations about their discriminative power. The features were preprocessed
for zero mean and unit variance.

4 The Recognition Results

Our experiments were performed on an extract of the well-known NIST (National
Institute of Standards and Technology) handwritten digit database. This database con-
sists of 7 partitions denoted as: hsf_0, ..., hsf_4, hsf_6 and hsf_7. Digit images from
the hsf_0 partition were used for classifier training while the tuning of classifier pa-
rameters (kernel width 6 and penalty C) was performed using the hsf_1 partition for
validation. The final recognition rates were estimated on most difficult partition
hsf_4. So, the samples in the test set belong to different writers from those in the
learning set. In Fig. 5 a fragment of the NIST database is given.
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Fig. 5. A fragment from the NIST database
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We used SVMs with Gaussian kernel because it provided better recognition rates
than linear, polynomial or sigmoidal kernel. Because of the large number of samples
we have used SVMTorch that is a more robust variation of SVM training software
library [5].

The decision fusion methods: Product, Dempster Rule, Fuzzy Integral, and Deci-
sion Templates require possibilistic outputs. To map the original outputs to [0, 1] in-
terval we used the mapping 1/(1+¢™).

The recognition rates of different classifier cooperation schemes applied on the
above described 3 feature sets: FS1, FS2 and FS3 are given in Table 1. In the second
column the corresponding cooperation scheme is given, followed by the recognition
rate and the rank of the cooperation scheme when combining classifiers are trained
using 1000, 2000, 5000, 10000, 30000 and all 53449 available samples.

The first 3 rows show recognition rates of each feature set individually. The row a)
gives the recognition results of a single optimized SVM classifier applied on the three
feature sets as a whole. The next row b) gives the recognition rate of a hypothetical
cooperation scheme that knows to choose the right class if it is predicted by at least
one of the member classifiers. This is the theoretical upper bound of the recognition
rates achievable by classifier decision fusion.

The cooperation schemes 1-4 are voting schemes including variations of the Borda
count that is a generalization of the majority vote [6]. The 5-12 cooperation schemes
use various averages, the maximum of the sum, product, maximum and the minimum
of the corresponding pairs of the classifier outputs respectively to make the final deci-
sion [7]. The Dempster Rule [8] and many variations [9] are given in rows 13-35.
The naive Bayes cooperation scheme given in rows 36-37 uses the confusion matrices
of member classifiers to estimate the certainty of the classifier decisions [10]. The
fuzzy integration 38-39 is based on searching for the maximal grade of agreement
between the objective evidence (provided by the sorted classifier outputs for class i)
and the expectation (the fuzzy measure values of both classifiers) [11]. We have also
used a variety of decision templates schemes 40-62 described elsewhere [12], [9].
The generalized committee prediction and its variations 63-67 are based on a
weighted combination of the predictions of the member classifiers [13]. Cooperation
scheme 76 uses linear regression to make decision fusion. In the cooperation scheme
69 the 4 individual SVM outputs (40 features) are input to another SVM classifier.
This kind of cooperation is also known as classification task [8].

Table 1 shows that the cooperation 69 (svmcmb) has unbeatable recognition rate in
all cases. However, this method is most complex because it needs additional classi-
fier and additional samples for its training. Because of additional number of samples
used in the training, this method sometimes outperforms even the “oracle method”.

Increasing the number of training samples, indeed increase recognition rates of in-
dividual classifiers and their cooperation. On the other hand, increasing recognition
rates of individual classifiers increase their correlation that reduces the possibility for
improvement of cooperation recognition rates.

Voting cooperation schemes (1-4) are among worst because they use most limited
information of member classifiers, ignoring useful information about second choices,
reliability of the choice, distribution of the choices for different classes, etc.

The simplest cooperation schemes (5-12) as we expected, have average recogni-
tion rates and should be used in not demanding applications.
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Table 1. Recognition rates (%) of combining SVM classifiers for 3 feature families (FS1, FS2,
FS3) and different sizes of learning set (1000, 2000, 5000, 10000, 30000 and all 53449
samples). R stands for rank

cooperation 1000| R 2000| R 5000 R| 10000| R| 30000| R all| R
FS1 87.3853 89.9857 91.5476 93.1931 94.8829 95.3398
FS2 86.5123 89.6003 90.3557 92.4087 94.7840 95.1454
FS3 89.9226 91.5203 92.4240 94.1002 95.7133 96.1003
a) | Single svm | 92.7514 93.9911 94.2758 95.9076 97.1899 97.3843
b) | oracle 95.4387 96.3629 96.6664 97.5105 98.2505 98.4909
1|vote 90.6012 | 64| 92.4974 | 66| 93.2493 | 67| 94.7925| 66 | 96.3084 | 60 | 96.6698 | 51
2| borda 91.0957 | 54| 92.9850 | 55| 93.6944 | 59 | 95.2017 | 49| 96.5573| 44 | 96.9597 | 6
3| bks 91.9500 | 27| 93.1692 | 44| 94.1445| 8| 94.9698 | 62| 96.1532| 65| 96.4038 | 65
4| bksv 92.1120| 14| 93.3329| 20| 94.2861| 5| 95.1915| 50| 96.2964 | 61| 96.5727 | 59
5]avg 91.5646 | 35| 93.3585| 18| 94.0320 | 11| 95.3944 | 9| 96.6681 | 23| 96.9461| 8
6| prod 91.1264 | 53| 92.9646 | 57 | 93.8581| 43| 95.3296 | 19| 96.7670| 7| 96.9086 | 15
7| harm 90.9218 | 59| 92.6645 | 65| 93.6910| 60| 95.2171 | 46 | 96.6562 | 25| 96.8182 | 40
8| cprod 90.5296 | 66 | 92.7889 | 62| 93.7643 | 56 | 95.1386 | 55| 96.6289 | 34 | 96.8898 | 24
9 [ maxmax 89.9567 | 68| 92.3678 | 67| 93.3226 | 65| 94.6151 | 67| 96.2402 | 62 | 96.5334 | 62
10 | minmax 90.5143 | 67| 92.1768 | 68| 93.3209 | 66 | 94.9101 | 64| 96.4942 | 49| 96.5880 | 54
11| med 91.0804 | 55| 93.0805 | 51| 93.6910| 60| 95.1318 | 56 | 96.5692 | 41| 96.8864 | 26
12 | davg 91.5578 | 36| 93.3636 | 17| 94.0166 | 13| 95.4183| 7| 96.6494 | 28| 96.9222 | 12
13 | demp 91.9278 | 28| 93.1453 | 48| 93.8853 | 40| 95.1761 | 53| 96.5795| 38| 96.8455 | 32
14| demppl | 91.3191| 45| 93.2050 | 40 | 93.8785| 41| 95.2921 | 29| 96.6426 | 29| 96.8352 | 36
15|dempp2 | 91.2441| 49| 93.2272| 37| 93.9075| 35| 95.2733 | 33| 96.6698 | 22 | 96.8932 | 22
16 | dempp3 90.6029 | 63| 92.9066 | 60 | 93.8103 | 53| 95.2648 | 34| 96.6920| 19| 96.9512| 7
17 | dempp4 91.3344 | 44| 93.2374| 35| 94.0013 | 16| 95.3245| 20| 96.7500| 9| 96.9086 | 15
18 | dempil 91.3651 | 42| 93.2561 | 34 | 93.9399 | 31| 95.3552 | 15| 96.7040| 17| 96.8949 | 21
19 | dempi2 91.1793 | 51| 93.1658 | 45| 93.8188 | 52| 95.2034 | 48| 96.5914 | 37| 96.7619 | 45
20 | dempc 90.7581 | 60| 93.0362 | 54| 93.8103 | 53| 95.2921| 29| 96.7398 | 11| 96.9324| 9
21| dempmk | 91.2219| 50| 93.1914 | 42| 93.8905| 38 | 95.2409 | 44| 96.6409 | 30| 96.8728 | 27
22 |dempch | 91.1673| 52| 93.1334 | 49| 93.9570| 28| 95.2648 | 34 | 96.7346| 12| 96.9239 | 11
23|dempas | 92.1785| 11| 93.3005 | 26 | 93.9007 | 36 | 95.3688 | 12| 96.7739| 4| 97.0143| 4
24 | dempchi | 91.3992 | 41| 93.2647 | 30| 93.8888| 39| 95.3006 | 26 | 96.6716 | 21| 96.8438 | 33
25| dempchi2 | 91.4777 | 40| 93.3482| 19| 93.9979| 18 | 95.3620 | 14| 96.7142 | 14| 96.8983 | 20
26 |dempbc | 91.2833| 46| 93.2050 | 40 | 93.8734 | 42| 95.3023 | 25| 96.6528 | 27| 96.8335 | 38
27 | demphl 91.6175| 33| 93.4062 | 16| 93.9859 | 22| 95.3910 | 10| 96.6835| 20| 96.8932 | 22
28| dempchr | 92.2075| 8| 93.4505| 11| 93.9467| 29| 95.3688 | 12| 96.7517 | 8| 97.0313| 3
29 | dempchr2 | 91.6448 | 32| 93.4386 | 12| 94.0814| 10| 95.4115| 8| 96.7193| 13| 96.9069 | 17
30| dempjac | 91.2458 | 48| 93.1538 | 47 | 93.8257 | 51| 95.2478| 39| 96.6340 | 31| 96.8216 | 39
31| dempper | 91.3617 | 43| 93.2306 | 36 | 93.8922| 37| 95.3211| 21| 96.6630 | 24| 96.8352 | 36
32 | dempse 89.8339 | 69| 93.5869| 8| 93.9996 | 17| 95.1830| 51| 96.4038 | 56 | 96.6903 | 49
33 | dempfr 92.0148| 20| 93.7080| 7| 93.9945|20| 95.1778| 52| 96.3783 | 58 | 96.5692 | 60
34 | dempm 91.6005 | 34| 93.1555 | 46 | 93.8581 | 43| 94.9937 | 61| 96.5744 | 40| 96.7466 | 46
35|dempmc | 92.4019| 5| 93.936| 5| 94.1002| 9| 95.2085 | 47| 96.2350 | 63| 96.4107 | 64
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Table 1. (continues)

cooperation 1000| R 2000| R 5000| R| 10000 R| 30000| R all| R
36 | pprod 91.2594 | 47| 93.0498 | 53| 93.9126 | 34| 95.3705| 11| 96.7432| 10| 96.9188 | 13
37 | bayes 91.5322| 38| 93.1231| 50| 93.7387 | 58| 95.0789 | 59 | 96.3646 | 59 | 96.7892 | 41
38 |fi 90.6797| 61| 92.9134| 59| 93.5187 | 62| 94.9647 | 63 | 96.4226| 51| 96.6698 | 51
39 |fic 90.5688 | 65| 92.8145 | 61| 93.4488 | 63| 94.9084 | 65| 96.4840| 50 | 96.7142 | 47
40 | dtpl 92.1001| 15| 93.3141| 21| 93.8478 | 45| 95.2426 | 40| 96.4158| 52 | 96.5863 | 55
41| dtp2 92.1580 | 12| 93.4096 | 14| 93.9314 | 32| 95.2614 | 36| 96.5215| 46 | 96.7841 | 42
42| dtp3 91.7215| 30| 93.4215| 13| 94.0303 | 12| 95.3501 | 18| 96.5761| 39 | 96.8728 | 27
43| dtil 92.0745| 19| 93.4829| 10| 93.9894 | 21| 95.2563 | 38| 96.5965| 35| 96.8694 | 29
44 | dti2 91.5442| 37| 92.7293 | 63| 93.4369 | 64 | 95.1165| 57 | 96.0986 | 67 | 95.9008 | 68
45| dti3 90.9252 | 58| 93.0771| 52| 93.8427 | 49| 95.2972 | 27| 96.5931| 36 | 96.8540 | 31
46 | dte 91.9892 | 23| 93.2834 | 28| 93.9723 | 24| 95.2938 | 28 | 96.6545| 26 | 96.9069 | 17
47 | dtmnk 92.1580 | 12| 93.4096 | 14| 93.9314 | 32| 95.2614 | 36| 96.5215| 46 | 96.7841 | 42
48 | dtch 90.9713| 57| 92.0813 | 69| 92.9646 | 68 | 94.3440| 69 | 96.1072| 66 | 96.4414 | 63
49 | dtcan 92.0012| 21| 92.7241| 64| 92.8861 | 69 | 94.3645 | 68 | 94.6237| 69 | 94.0337 | 69
50 | dtas 91.9585| 25| 93.2613| 32| 93.9689 | 25| 95.3518| 16| 96.6323 | 32| 96.8438 | 33
51 | dtchi 92.2314| 6| 93.2988| 27| 93.9962 | 19| 95.3091 | 23| 96.5658 | 42| 96.7057 | 48
52 | dtchi2 92.2160| 7| 93.3039| 25| 94.0047 | 15| 95.3108 | 22| 96.5624 | 43 | 96.7636 | 44
53 | dtbc 92.1001| 15| 93.3141| 21| 93.8478 | 45| 95.2426 | 40| 96.4158| 52 | 96.5863 | 55
54 | dthl 92.1819| 10| 93.1879| 43| 93.9450 | 30| 95.2836 | 31| 96.5334 | 45| 96.6392 | 53
55 | dtchr 91.9585| 25| 93.2613 | 32| 93.9689 | 25| 95.3518| 16 | 96.6323| 32| 96.8438 | 33
56 | dtchr2 92.1904| 9| 93.2186| 39| 93.9621 | 27| 95.2836 | 31| 96.5215| 46 | 96.6869 | 50
57 | dtjac 92.1001| 15| 93.3141| 21| 93.8478 | 45| 95.2426 | 40| 96.4158| 52 | 96.5863 | 55
58 | dtper 92.1001| 15| 93.3141| 21| 93.8478| 45| 95.2426| 40| 96.4158 | 52| 96.5863 | 55
59 | dtse 91.7164 | 31| 93.2630| 31| 93.7933 | 55| 95.0022 | 60 | 96.2350 | 63 | 96.2896 | 66
60 | dtfr 92.0012| 21| 93.7319| 6| 94.0166 | 13| 95.1540 | 54| 96.3919 | 57| 96.5624 | 61
61| dtm 03.0686| 3| 94.1786| 3| 94.3594| 3| 95.6451| 2| 96.7687| 6| 96.8898 | 24
62 | dtmc 03.3636| 2| 94.2724| 2| 94.4208| 2| 95.1165| 57| 95.9520 | 68| 96.1839 | 67
63 | epw 90.6353 | 62| 92.9424 | 58| 93.8376 | 50 | 95.2324 | 45| 96.7091| 15| 96.9171| 14
64 |gc 91.0378| 56 | 92.9663 | 56 | 93.7626 | 57 | 95.3074 | 24 | 96.6988 | 18 | 96.8574 | 30
65 | mgc 91.7352| 29| 93.2766 | 29| 93.9859 | 22| 95.4609| 6| 96.7091| 15| 96.9307 | 10
66 | ogc 91.9602 | 24| 935784 | 9| 94.1599| 7| 95.5342| 4| 96.8301| 2| 97.0723
67 [omgc 91.4964 | 39| 93.2203 | 38| 94.2622| 6| 95.4728| 5| 96.7773| 3| 97.0075
68 | mir 92.9458 94.1258| 4| 94.3389| 4| 95.6280| 3| 96.7739| 4| 96.9052| 19
69 |svmemb | 97.1814 97.2888| 1| 97.2990| 1| 97.3792| 1| 97.7765| 1| 97.8788| 1

fuzzy integration (38-39) shows weak results.

It is interesting that Dempster Rule and its variations (13-35) have in average bet-
ter recognition rates than decision templates schemes (40-62).
The naive Bayes cooperation schemes (36-37) are relatively good choice while the

The generalized committee prediction and its variations (63-67), together with lin-

ear regression (68) are among the best methods and should be considered as serious
candidates for implementation in any pattern recognition application based on classi-
fier cooperation.
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5 Conclusion

In this paper, the cooperation of three feature families for handwritten digit recog-
nition using SVM classifiers is examined. We investigate an extensive number of co-
operation schemes based on classifier decision fusion.

The presented results show that it is difficult to achieve the recognition rate of a
single SVM applied on the feature set that includes all feature families by combining
the individual SVM decisions. In our experiments only one of the cooperation
schemes exceeded the recognition rate of a single SVM classifier. These results im-
pose the crucial question: whether the methods for classifier cooperation are still
needed [14] or pattern recognition tasks could be better solved by a single, well-opti-
mized SVM classifier. However, the classifier cooperation reduces the classifier com-
plexity, need for samples, and sometimes can increase the classifier performance.
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