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Abstract. Recent results in pattern recognition applications have shown that 
SVMs (Support Vector Machines) often have superior recognition rates in 
comparison to other classification methods. In this paper, the cooperation of 
three SVM classifiers for handwritten digit recognition, each using different 
feature family is examined. We investigate the advantages and weaknesses of 
various cooperation schemes based on classifier decision fusion using statistical 
reasoning. Although most of the used schemes are variations and adaptations of 
existing ones, such an extensive number of cooperation schemes have not been 
presented in the literature until now. The obtained results show that it is diffi-
cult to exceed the recognition rate of a single, well-tuned SVM classifier ap-
plied straightforwardly on all feature families as a single set. However, the 
classifier cooperation reduces the classifier complexity and need for samples, 
decreases classifier training time and sometimes improves the classifier per-
formance. 

1   Introduction 

Combining features of different nature and the corresponding classifiers has been 
shown to be a promising approach in many pattern recognition applications. Data 
from more than one source that are processed separately can often be profitably re-
combined to produce more concise, more complete and/or more accurate situation 
description. In this paper, we discuss classification systems for handwritten digit rec-
ognition using three different feature families and SVM classifiers [1]. We start with 
a SVM classifier applied on all feature families as one set. Further, we used three 
SVM classifiers that work on the different feature families for the same digit image. 
As the feature sets “see” the same digit image from different points of view, we ex-
amined the possibility of decision fusion using statistical cooperation schemes. An 
extensive number of cooperation schemes were examined and corresponding recog-
nition results are presented. Our aim was not to compete with the recognition rates of 
the other handwritten digit recognition systems e.g. [2], [3], but to compare the quali-
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ties of different feature families, corresponding SVM classifiers and their com-
bination based on different classifier decision fusion. 

The presented results show that it is difficult to achieve the recognition rate of a 
single optimized SVM classifier applied on the feature set that includes all feature 
families. However, the cooperation of individual classifiers designed for separate fea-
ture families reduce the classifier complexity and need for training samples, offering 
better opportunity to understand the role of the features in the recognition process. 

2   The System Architecture 

The recognition system is constructed around a modular architecture of feature ex-
traction and digit classification units. The preprocessed isolated digit images are input 
for the feature extraction module, that transfers the extracted features toward SVM 
classifiers (see Fig. 1).   

 
Input digit 
image 

Feature extraction 
Feature set 1   Feature set  2  . . . Feature set  L 

Filtering, posioning and skew correction 

SVM  1 SVM   2 SVM  L 

C o m b i n i n g 

.  .  . 

Classified digit  
Fig. 1. The system architecture 

Each image is centered in a square bounding box, and then slant correction is per-
formed. The slant angle is estimated as the inclination of the line connecting the grav-
ity centers of the top 25% part and the bottom 25% part of the image. Then a sub-
pixel precision shear transformation is performed in order to remove the estimated 
inclination.  

3   Feature Extraction 

Three feature families were extracted from each digit image:  
• contour profiles,  
• ring-zones and  
• Kirsch features. 
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Feature extraction was performed on the original unscaled images, after the slant 
correction.  

The first feature family (FS1) is composed of 30 contour profile features (see Fig. 
2). The image is scanned from left to right, top to bottom, right to left and bottom to 
top, respectively. The distance from the corresponding edge of the image to the first 
black pixel which the scanning line intersects, represent the contour profile feature on 
the first level. The distance to the first black pixel in the second black pixel run repre-
sent the contour profile features on the second level. Since not all of the character im-
ages were of the same size, the profile vectors were linearly rescaled in order to ob-
tain 6 features from the left and right contour profiles and 5 features from the upper 
and lower profiles on the first level of the digit image. Finally, 4 features were ex-
tracted from the upper and the lower contour profiles of the second level.  

 

Fig. 2. Contour profiles of first and second level 

The second group of 44 features (FS2) are extracted as pixel counts in rings zones 
around the gravity center of the image (see Fig. 3). We have used three rings, each 
divided in different number of equal zones. The outermost ring has a radius r equal to 
the distance from the gravity center to the furthest black pixel of the image. The first 
ring with radius 0.2·r provides 4 features and the second ring with radius 0.5·r pro-
vides 24 features. The last 16 features are provided from the outermost ring. 

   
Fig. 3. Ring-zone features 

The last group of 72 features (FS3) use Kirsch operator [4] to detect local direc-
tional information of the edges of the input pattern. Compared with chain code which 
also describes the edge direction, Kirsch edge detection is more robust even under 
noisy conditions.  

The first black pixel which the scanning line intersects forms the first outermost 
periphery. The second black pixel which is the starting point of the second black 
pixel run forms the second outermost periphery (see Fig. 4). When the image is 
scanned in horizontal direction, the vertical and both diagonal Kirsch features are 
extracted at the outermost periphery. When the image is scanned in vertical direction, 
the horizontal and both diagonal Kirsch features are extracted at the outermost and 
second outermost periphery. This way, 3 Kirsch directional features are provided for 
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each periphery pixel. The feature vectors are again linearly rescaled to 15 features 
coming from the left and right periphery each, 12 features coming from the first out-
ermost top and bottom periphery each, and 9 features coming from the second outer-
most top and bottom peripheries.  

first
topmost

periphery

leftmost
periphery

rightmost
periphery

second
topmost

periphery
     

Fig. 4. Kirsch features 

Kirsch feature extraction is performed on the grayscale digit images using sub-
pixel precision. All parameters including the number of features by projection, the 
radiuses of rings for zone-pattern regions and the number of features coming from the 
outermost peripheries for Kirsch features are carefully chosen after several iterations 
using observations about their discriminative power. The features were preprocessed 
for zero mean and unit variance. 

4   The Recognition Results 

Our experiments were performed on an extract of the well-known NIST (National 
Institute of Standards and Technology) handwritten digit database. This database con-
sists of 7 partitions denoted as: hsf_0, …, hsf_4, hsf_6 and hsf_7. Digit images from 
the hsf_0 partition were used for classifier training while the tuning of classifier pa-
rameters (kernel width σ and penalty C) was performed using the hsf_1 partition for 
validation. The final recognition rates were estimated on most difficult partition 
hsf_4. So, the samples in the test set belong to different writers from those in the 
learning set. In Fig. 5 a fragment of the NIST database is given. 

         

         

         

         

         

         

         

         

         

          
Fig. 5. A fragment from the NIST database 

26



We used SVMs with Gaussian kernel because it provided better recognition rates 
than linear, polynomial or sigmoidal kernel. Because of the large number of samples 
we have used SVMTorch that is a more robust variation of SVM training software 
library [5]. 

The decision fusion methods: Product, Dempster Rule, Fuzzy Integral, and Deci-
sion Templates require possibilistic outputs. To map the original outputs to [0, 1] in-
terval we used the mapping 1/(1+e-x). 

The recognition rates of different classifier cooperation schemes applied on the 
above described 3 feature sets: FS1, FS2 and FS3 are given in Table 1. In the second 
column the corresponding cooperation scheme is given, followed by the recognition 
rate and the rank of the cooperation scheme when combining classifiers are trained 
using 1000, 2000, 5000, 10000, 30000 and all 53449 available samples. 

The first 3 rows show recognition rates of each feature set individually. The row a) 
gives the recognition results of a single optimized SVM classifier applied on the three 
feature sets as a whole. The next row b) gives the recognition rate of a hypothetical 
cooperation scheme that knows to choose the right class if it is predicted by at least 
one of the member classifiers. This is the theoretical upper bound of the recognition 
rates achievable by classifier decision fusion. 

The cooperation schemes 1-4 are voting schemes including variations of the Borda 
count that is a generalization of the majority vote [6]. The 5-12 cooperation schemes 
use various averages, the maximum of the sum, product, maximum and the minimum 
of the corresponding pairs of the classifier outputs respectively to make the final deci-
sion [7]. The Dempster Rule [8] and many variations [9] are given in rows 13-35.  
The naive Bayes cooperation scheme given in rows 36-37 uses the confusion matrices 
of member classifiers to estimate the certainty of the classifier decisions [10]. The 
fuzzy integration 38-39 is based on searching for the maximal grade of agreement 
between the objective evidence (provided by the sorted classifier outputs for class i) 
and the expectation (the fuzzy measure values of both classifiers) [11]. We have also 
used a variety of decision templates schemes 40-62 described elsewhere [12], [9]. 
The generalized committee prediction and its variations 63-67 are based on a 
weighted combination of the predictions of the member classifiers [13]. Cooperation 
scheme 76 uses linear regression to make decision fusion. In the cooperation scheme 
69 the 4 individual SVM outputs (40 features) are input to another SVM classifier. 
This kind of cooperation is also known as classification task [8]. 

Table 1 shows that the cooperation 69 (svmcmb) has unbeatable recognition rate in 
all cases.  However, this method is most complex because it needs additional classi-
fier and additional samples for its training. Because of additional number of samples 
used in the training, this method sometimes outperforms even the “oracle method”. 

Increasing the number of training samples, indeed increase recognition rates of in-
dividual classifiers and their cooperation. On the other hand, increasing recognition 
rates of individual classifiers increase their correlation that reduces the possibility for 
improvement of cooperation recognition rates. 

Voting cooperation schemes (1-4) are among worst because they use most limited 
information of member classifiers, ignoring useful information about second choices, 
reliability of the choice, distribution of the choices for different classes, etc. 

The simplest cooperation schemes (5-12) as we expected, have average recogni-
tion rates and should be used in not demanding applications. 
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Table 1.  Recognition rates (%) of combining SVM classifiers for 3 feature families (FS1, FS2, 
FS3) and different sizes of learning set (1000, 2000, 5000, 10000, 30000 and all 53449 
samples). R stands for rank 

 cooperation 1000 R 2000 R 5000 R 10000 R 30000 R all R 
 FS1 87.3853   89.9857  91.5476  93.1931  94.8829  95.3398   
 FS2 86.5123   89.6003  90.3557  92.4087  94.7840  95.1454   
 FS3 89.9226   91.5203  92.4240  94.1002  95.7133  96.1003   

a) Single SVM 92.7514  93.9911 94.2758 95.9076 97.1899 97.3843  

b) oracle 95.4387 96.3629 96.6664 97.5105 98.2505 98.4909  

1 vote 90.6012 64 92.4974 66 93.2493 67 94.7925 66 96.3084 60 96.6698 51 
2 borda 91.0957 54 92.9850 55 93.6944 59 95.2017 49 96.5573 44 96.9597 6 
3 bks 91.9500 27 93.1692 44 94.1445 8 94.9698 62 96.1532 65 96.4038 65 
4 bksv 92.1120 14 93.3329 20 94.2861 5 95.1915 50 96.2964 61 96.5727 59 

5 avg 91.5646 35 93.3585 18 94.0320 11 95.3944 9 96.6681 23 96.9461 8 
6 prod 91.1264 53 92.9646 57 93.8581 43 95.3296 19 96.7670 7 96.9086 15 
7 harm 90.9218 59 92.6645 65 93.6910 60 95.2171 46 96.6562 25 96.8182 40 
8 cprod 90.5296 66 92.7889 62 93.7643 56 95.1386 55 96.6289 34 96.8898 24 
9 maxmax 89.9567 68 92.3678 67 93.3226 65 94.6151 67 96.2402 62 96.5334 62 

10 minmax 90.5143 67 92.1768 68 93.3209 66 94.9101 64 96.4942 49 96.5880 54 
11 med 91.0804 55 93.0805 51 93.6910 60 95.1318 56 96.5692 41 96.8864 26 
12 davg 91.5578 36 93.3636 17 94.0166 13 95.4183 7 96.6494 28 96.9222 12 

13 demp 91.9278 28 93.1453 48 93.8853 40 95.1761 53 96.5795 38 96.8455 32 
14 dempp1 91.3191 45 93.2050 40 93.8785 41 95.2921 29 96.6426 29 96.8352 36 
15 dempp2 91.2441 49 93.2272 37 93.9075 35 95.2733 33 96.6698 22 96.8932 22 
16 dempp3 90.6029 63 92.9066 60 93.8103 53 95.2648 34 96.6920 19 96.9512 7 
17 dempp4 91.3344 44 93.2374 35 94.0013 16 95.3245 20 96.7500 9 96.9086 15 
18 dempi1 91.3651 42 93.2561 34 93.9399 31 95.3552 15 96.7040 17 96.8949 21 
19 dempi2 91.1793 51 93.1658 45 93.8188 52 95.2034 48 96.5914 37 96.7619 45 
20 dempc 90.7581 60 93.0362 54 93.8103 53 95.2921 29 96.7398 11 96.9324 9 
21 dempmk 91.2219 50 93.1914 42 93.8905 38 95.2409 44 96.6409 30 96.8728 27 
22 dempch 91.1673 52 93.1334 49 93.9570 28 95.2648 34 96.7346 12 96.9239 11 
23 dempas 92.1785 11 93.3005 26 93.9007 36 95.3688 12 96.7739 4 97.0143 4 
24 dempchi 91.3992 41 93.2647 30 93.8888 39 95.3006 26 96.6716 21 96.8438 33 
25 dempchi2 91.4777 40 93.3482 19 93.9979 18 95.3620 14 96.7142 14 96.8983 20 
26 dempbc 91.2833 46 93.2050 40 93.8734 42 95.3023 25 96.6528 27 96.8335 38 
27 demphl 91.6175 33 93.4062 16 93.9859 22 95.3910 10 96.6835 20 96.8932 22 
28 dempchr 92.2075 8 93.4505 11 93.9467 29 95.3688 12 96.7517 8 97.0313 3 
29 dempchr2 91.6448 32 93.4386 12 94.0814 10 95.4115 8 96.7193 13 96.9069 17 
30 dempjac 91.2458 48 93.1538 47 93.8257 51 95.2478 39 96.6340 31 96.8216 39 
31 dempper 91.3617 43 93.2306 36 93.8922 37 95.3211 21 96.6630 24 96.8352 36 
32 dempse 89.8339 69 93.5869 8 93.9996 17 95.1830 51 96.4038 56 96.6903 49 
33 dempfr 92.0148 20 93.7080 7 93.9945 20 95.1778 52 96.3783 58 96.5692 60 
34 dempm 91.6005 34 93.1555 46 93.8581 43 94.9937 61 96.5744 40 96.7466 46 
35 dempmc 92.4019 5 93.936 5 94.1002 9 95.2085 47 96.2350 63 96.4107 64 
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Table 1. (continues) 

cooperation 1000 R 2000 R 5000 R 10000 R 30000 R all R 
36 pprod 91.2594 47 93.0498 53 93.9126 34 95.3705 11 96.7432 10 96.9188 13 
37 bayes 91.5322 38 93.1231 50 93.7387 58 95.0789 59 96.3646 59 96.7892 41 
38 fi 90.6797 61 92.9134 59 93.5187 62 94.9647 63 96.4226 51 96.6698 51 
39 fic 90.5688 65 92.8145 61 93.4488 63 94.9084 65 96.4840 50 96.7142 47 

40 dtp1 92.1001 15 93.3141 21 93.8478 45 95.2426 40 96.4158 52 96.5863 55 
41 dtp2 92.1580 12 93.4096 14 93.9314 32 95.2614 36 96.5215 46 96.7841 42 
42 dtp3 91.7215 30 93.4215 13 94.0303 12 95.3501 18 96.5761 39 96.8728 27 
43 dti1 92.0745 19 93.4829 10 93.9894 21 95.2563 38 96.5965 35 96.8694 29 
44 dti2 91.5442 37 92.7293 63 93.4369 64 95.1165 57 96.0986 67 95.9008 68 
45 dti3 90.9252 58 93.0771 52 93.8427 49 95.2972 27 96.5931 36 96.8540 31 
46 dte 91.9892 23 93.2834 28 93.9723 24 95.2938 28 96.6545 26 96.9069 17 
47 dtmnk 92.1580 12 93.4096 14 93.9314 32 95.2614 36 96.5215 46 96.7841 42 
48 dtch 90.9713 57 92.0813 69 92.9646 68 94.3440 69 96.1072 66 96.4414 63 
49 dtcan 92.0012 21 92.7241 64 92.8861 69 94.3645 68 94.6237 69 94.0337 69 
50 dtas 91.9585 25 93.2613 32 93.9689 25 95.3518 16 96.6323 32 96.8438 33 
51 dtchi 92.2314 6 93.2988 27 93.9962 19 95.3091 23 96.5658 42 96.7057 48 
52 dtchi2 92.2160 7 93.3039 25 94.0047 15 95.3108 22 96.5624 43 96.7636 44 
53 dtbc 92.1001 15 93.3141 21 93.8478 45 95.2426 40 96.4158 52 96.5863 55 
54 dthl 92.1819 10 93.1879 43 93.9450 30 95.2836 31 96.5334 45 96.6392 53 
55 dtchr 91.9585 25 93.2613 32 93.9689 25 95.3518 16 96.6323 32 96.8438 33 
56 dtchr2 92.1904 9 93.2186 39 93.9621 27 95.2836 31 96.5215 46 96.6869 50 
57 dtjac 92.1001 15 93.3141 21 93.8478 45 95.2426 40 96.4158 52 96.5863 55 
58 dtper 92.1001 15 93.3141 21 93.8478 45 95.2426 40 96.4158 52 96.5863 55 
59 dtse 91.7164 31 93.2630 31 93.7933 55 95.0022 60 96.2350 63 96.2896 66 
60 dtfr 92.0012 21 93.7319 6 94.0166 13 95.1540 54 96.3919 57 96.5624 61 
61 dtm 93.0686 3 94.1786 3 94.3594 3 95.6451 2 96.7687 6 96.8898 24 
62 dtmc 93.3636 2 94.2724 2 94.4208 2 95.1165 57 95.9520 68 96.1839 67 

63 epw 90.6353 62 92.9424 58 93.8376 50 95.2324 45 96.7091 15 96.9171 14 
64 gc 91.0378 56 92.9663 56 93.7626 57 95.3074 24 96.6988 18 96.8574 30 
65 mgc 91.7352 29 93.2766 29 93.9859 22 95.4609 6 96.7091 15 96.9307 10 
66 ogc 91.9602 24 93.5784 9 94.1599 7 95.5342 4 96.8301 2 97.0723 2 
67 omgc 91.4964 39 93.2203 38 94.2622 6 95.4728 5 96.7773 3 97.0075 5 
68 mlr 92.9458 4 94.1258 4 94.3389 4 95.6280 3 96.7739 4 96.9052 19 
69 svmcmb 97.1814 1 97.2888 1 97.2990 1 97.3792 1 97.7765 1 97.8788 1 

It is interesting that Dempster Rule and its variations (13-35) have in average bet-
ter recognition rates than decision templates schemes (40-62).  

The naive Bayes cooperation schemes (36-37) are relatively good choice while the 
fuzzy integration (38-39) shows weak results. 

The generalized committee prediction and its variations (63-67), together with lin-
ear regression (68) are among the best methods and should be considered as serious 
candidates for implementation in any pattern recognition application based on classi-
fier cooperation. 
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5   Conclusion 

In this paper, the cooperation of three feature families for handwritten digit recog-
nition using SVM classifiers is examined. We investigate an extensive number of co-
operation schemes based on classifier decision fusion.   

The presented results show that it is difficult to achieve the recognition rate of a 
single SVM applied on the feature set that includes all feature families by combining 
the individual SVM decisions. In our experiments only one of the cooperation 
schemes exceeded the recognition rate of a single SVM classifier. These results im-
pose the crucial question: whether the methods for classifier cooperation are still 
needed [14] or pattern recognition tasks could be better solved by a single, well-opti-
mized SVM classifier. However, the classifier cooperation reduces the classifier com-
plexity, need for samples, and sometimes can increase the classifier performance. 
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