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Abstract—Air pollution in North Macedonia is 20 times over 

the EU limit. Recently Skopje is mentioned as the most polluted 

city in Europe. As a result, this is believed to contribute to 2000 

annual premature deaths in Skopje, Tetovo and Bitola only. 

Being able to forecast air pollution levels to take timely 

precaution could drastically reduce these numbers. Using state 

of the art recurrent neural networks known as LSTMs, we were 

able to predict these levels by combining historical pollution 

data and weather forecasts through meta models, achieving 

mean RMSE for all sensors around 20, with the best results 

having RMSE as low as 8.78, with PM10 measurements ranging 

from 0 to above 1000 and are usually accompanied by a lot of 

noise. In this paper we present several approaches we have tried 

for solving the problem and a basic comparison between them 

and we also propose a way to expand these models into a real-

time system for multitarget predictions.  
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I. INTRODUCTION 

 In the late 70's and early 80's, researchers dismissed initial 
studies indicating that air pollution is directly associated to 
daily mortality rates [1] due to the fact that these experiments 
didn't account for cigarette smoking and other health related 
issues. However, in 1993 a 14-years long U.S. study emerged 
[2] providing results that despite the inability to dismiss the 
effects of other unmeasured risk factors with certainty, fine-
particulate air pollution does in fact contribute to excess 
mortality. These particles (aerodynamic diameter less than 2.5 
micromillimeters) are thought to pose a particularly great risk 
to health because they are more likely to be toxic than larger 
particles and can be inhaled deeper into the lungs. 

Recent data released by the World Health Organization [3] 
show that both prenatal and postnatal exposure to air pollution 
can negatively influence neurodevelopment, lead to lower 
cognitive test outcomes and influence the development of 
behavioral disorders such as autism spectrum disorders and 
attention deficit hyperactivity disorder. More recently, the 
Institute of Public Health of Republic of North Macedonia [4] 
showed that 1,903 human lives (excess deaths) are lost 
annually due to PM2.5 exposures (22.3% of total all-cause 
(natural) mortality). If the limit values of the PM2.5 particles 
had complied with the existing EU and WHO limit values, 908 
lives could have possibly been saved, and 1547 respectively. 

Being aware of the possible hazards air pollution imposes, 
our goal is to explore the ways of efficiently forecasting the 
pollution levels of these fine particles. In this paper we focus 
on predicting PM10 particles for reasons connected to 
availability and abundance of data, but since they are highly 
correlated with the PM2.5, that should not be a problem.  
Ultimately, the mission is to provide a tool that will allow the 
citizens of Skopje to be in control of how exposed they are to 
ambient air pollution. 

The remainder of the paper is organized as follows: in 
section II we describe the theoretical background of LSTMs 
and their advantage to standard RNNs, while section III 
presents our data and the preprocessing stage. In Section IV 
we make an overview of the models we are using for 
prediction and finally in section V and section VI we compare 
the results, share future plans and conclude the paper. 

II. THEORETICAL BACKGROUND 

In this paper, we propose using an RNN called long short-
term memory (LSTM), to analyze time series air pollution in 
Skopje. The LSTMs take as input not only the current timestep 
input, but also what they have "perceived" previously in time. 
While RNNs (Recurrent Neural Networks) are suitable fit for 
modeling time series data, they have been known to have a 
serious issue - vanishing gradient [5]. This occurs as result of 
the many multiplications that occur within the hidden layers 
of the net, creating derivatives that vanish as they progress 
through the network while backpropagating. In simple terms, 
the network learns incredibly slow, or in some cases does not 
learn at all. On the other hand, LSTMs solve this problem by 
preserving the error in a gated cell, thus the gradient is 
calculated very differently from the standard RNN [6]. Since 
the LSTMs already demonstrated their usability for time series 
prediction in recent years, the decision to use this algorithm 
was unequivocal. The comparison between a simple RNN and 
an LSTM RNN is shown in Figures 1 and 2, respectively. 

 

Fig. 1. RNN with one layer and no gated memory cells 



 

Fig. 2. LSTM RNN with gated memory and sigmoid activation functions 

III. DATA 

A. Description 

The data were obtained from two separate sources. First, 
we queried air pollution data from Skopje Pulse 
(https://skopjepulse.mk/) generated by six sensors owned by 
the government located in the following locations around 
Skopje: Centar, Lisiche, Miladinovci, Karposh, Gazi Baba 
and Rektorat. Each of these sensors were put into use at 
different times, with the oldest one being online for 14 years, 
dating back to 2005. Next, we queried the data from Dark 
Sky’s API (https://darksky.net), acquiring information about 
Skopje’s hourly weather from 2012 until 2019. 

B. Preprocessing 

The preprocessing was done using the Pandas toolkit in 
Python [7]. Both the air pollution and the weather datasets 
were hourly, each having timestamp as an index column. The 
air pollution dataset had a single feature: value of the 
measured PM10 concentration. On the other hand, the weather 
dataset had the following features: cloud cover, dew point, 
humidity, temperature, UV index, visibility, wind speed and 
wind direction. The wind direction attribute contained 
categorical values such as the following: N (North), NE 
(North-East), NNE (North-North-East) etc. Instead of simply 
enumerating the values, we decided to represent this attribute 
as two separate ones – Wind X and Wind Y, expressing the 
spatial proximity between the values. If we were to enumerate 
them, 1 being N and 16 being NNW – we can immediately see 
the issue: naturally these values are extremely near, but their 
enumeration values are the furthest apart. Thus, given the 
spatial arrangement of the wind values, we obtained the X and 
Y components by appropriately taking the cosine and sine of 
the angle being formed. Fig.3 shows the circle of wind 
directions and their sine and cosine mappings. 

Finally, we augmented the weather dataset by adding two 
additional attributes: a boolean indicating if it’s a workday or 
not, and the month. Again, for reasons described above, we 
transformed the month value as two separate attributes (ex. 
January is as close to February as it is to December). From 
now on, we refer to this augmented dataset as extras. 

C. Data Partitioning 

Based on the model architectures described below, we 
split the datasets of all the different sensors in the following 
manner: 

• TRAIN1 – for training the LSTM (from 2005 until 
2015) 

• TRAIN2 – for training the SVR meta model (from 
2015 until 2017) 

• TEST – for testing the both LSTM and meta model 
(only 2018) 

 
Fig. 3. Wind direction with 2D angle mappings 

IV. METHODS 

The focus was to train the LSTMs and then combine them 
into a meta model for every sensor separately. Generally, we 
can divide our experiments in two separate approaches: 
Univariate and Multivariate (describing the type of the 
LSTMs used in the first stage before the Meta models). 

A. Univariate 

In this approach, we used only the sensor values from 
TRAIN1, without the extras to train five univariate LSTMs on 
all sensors separately, with a time lag of 48 hours, while 
optimizing the hyperparameters (number of units, hidden 
layers, activation functions, regularization, optimizers and 
loss functions) with the help of a validation set extracted from 
TRAIN1 as a hold-out. Next, we used the models to make 
predictions for the TRAIN2. We then combined these 
predictions from the LSTMs with the extras dataset acquiring 
a train set for the Meta model. This train set contained 18 
features (12 from the extras and the 6 separate LSTM 
predictions for all sensors) and one target for every Meta 
model. For instance, the Meta model for Centar would contain 
LSTM predictions for Centar, Lisiche, Miladinovci, Karposh, 
Gazi Baba and Rektorat (along with the extras), but the target 
value would be the actual Centar measurement on the exact 
timestamp from the sensor. From Fig. 4 and Fig. 5, we see the 
format of the univariate LSTM train sets and the Meta train 
sets respectively. Fig. 6. shows the complete architecture of 
the first approach 

All meta models are Support Vector Regressors with a 
gaussian kernel [10], trained using the Scikit-Learn machine 
learning library [8] and optimized on their three 
hyperparameters (C, epsilon and gamma) using 10-fold cross 
validation. 

 

Fig. 4. Train data for Univariate LSTM (lag 48) 

 

Fig. 5. Train data for meta model with Univariate LSTM (Rektorat) 



 
Fig. 6. Univariate architecture 

B. Multivariate 

The idea of the second approach was to use the extras from 
the beginning, by utilizing the multivariate system of the 
LSTMs implemented in Keras [9]. We used  TRAIN1 with the 
12 extras features along with the sensor values with a time lag 
of 3, granting a total of 39 features for every input. Since, 
Keras uses matrix 3D representation for multivariate 
problems, our vectors had the shape of (#train_examples, 3, 
13). Having this format, we trained 6 LSTM multivariate 
models for every sensor and then we combined these into meta 
models for each respective sensor (Fig. 7). From Fig. 8 and 
Fig. 9 we see the format of the multivariate LSTM train sets 
and their respective meta train sets. Even though the two main 
approaches were quite the opposite, the results from the two 
separate methods were not significantly different. 

 
Fig. 7 Multivariate architecture 

 

Fig. 8. Train data for Multivariate LSTM (lag 3) 

 

Fig. 9. Train data for meta model with Multivariate LSTM (Rektorat) 

V. RESULTS AND FUTURE WORK 

A. Results 

RMSE (Root Mean Square Error) results are shown in 
Table I for every sensor and its respective four main 
predictions for the next hour: Univariate LSTM, Multivariate 
LSTM, meta derived from Univariate LSTMs and meta 
derived from Multivariate LSTMs. We can see that the meta 
models give a huge boost to both univariate and multivariate 
approaches for all sensors, while not showing a significant 
difference between both methods. Since the sensor values 
vary from 0 to 1000, being able to predict with RMSE around 
10 could be very useful. Fig. 10 shows hourly timestep in 
subset of the predicted year (2018) from the test set for 
Centar’s sensor. It is important to notice that predicting more 
than one hour ahead is possible in both cases. Univariate 
multistep prediction would utilize a circular movement going 
forward with the previous 47 hours plus the new predicted 
value from the meta, combining them with a forecasted 
weather data from an API like Darksky. The multivariate 
approach also allows the circular movement predictions but 
could easily implement immediate prediction for more hours 
since the LSTMs use the weather data instead of the meta, 
having no need for circular patterns forward in time. 

TABLE I.  PREDICTION RESULTS FOR THE NEXT HOUR 

Sensor 
Root Mean Square Error (RMSE) 

Univariate 

LSTM 

Multivariate 

LSTM 

Univariate 

Meta 

Multivariate 

Meta 

Centar 21.784 21.028 9.872 12.749 

Lisiche 37.606 37.957 30.452 31.242 

Miladinovci 23.728 24.558 20.528 21.697 

Karposh 22.714 24.232 11.34 14.375 

Gazi Baba 38.922 39.953 29.213 31.370 

Rektorat 32.417 35.063 26.231 28.868 

 

Fig. 10. Meta model Prediction vs. Actual 

B. Future Work 

Finding the optimal way to predict at least 24 hours 
straight is possible and is crucial for many stakeholders 
(government, ecologists, non-profit organizations etc.) for 
managing resources, detecting polluters, measuring 
successfulness of the safety measures and many more, but also 
it is important information for the everyday life of the citizens 
of North Macedonia. There are many experiments that can be 
done in the future on managing the LSTMs, but also in 
combining the Meta models in many different manners. If we 
would use multi-target LSTMs (predicting 24 hours in the 
future instead of one), we would have multiple outputs of 
every LSTM model, thus the attribute combinations for the 
Meta models are huge.  



 We could experiment in that time interval of 24 hours and 
find patterns that would be very useful for a precise prediction. 
For example, we could use future predictions of the LSTMs 
(10 hours ahead) as an input to the Meta model for just one 
hour ahead or vice versa. 

There is also a room for improvement on the data 
gathering and quality, since there are many weather attributes 
that were not available for us for the time being (for example: 
cumulative rainfall and cumulative snowfall for the past hour, 
day, week etc.). We still have some ideas for data 
preprocessing and transforming the date and time parameters 
into some more useful, but also discovering some new ones 
too. 

Even though the models recognize the overall pattern, the 
amount of data is a huge factor for the LSTMs, so making a 
system that can train daily on the new everyday data is our top 
priority for this project. 

VI. CONCLUSION 

Predicting air pollution accurately is possible, especially 
by using the right weather and air pollution sensor data from 
robust sensors placed on noiseless surroundings. In this paper, 
we presented a method for utilizing this correlation between 
sensors on different location by combining predictions from 
different models into one with the usage of Meta models. By 
training these correctors of the LSTMs, we drastically 
increased the prediction capabilities, thus emphasizing the 
connection between the measurements of different sensors, 
gaining RMSE results below 20 for most of the Meta models.  

Because long-term prediction tasks are naturally more 
difficult, they require more relevant historical data, including 
optimum time lags, which adds another layer of optimization 
of the LSTM model. This means that many hyperparameters, 
such as batch size and number of LSTM cells, may still be 
optimized to return a lower RMSE for longer future 

forecasting. The hope is that by leveraging as much time series 
data as possible we can create stronger weights in the RNN, 
based on the sequence dependencies. As mentioned above, 
longer prediction times can help cities in policymaking and 
resource allocation, but more importantly, can help in the main 
battle against air pollution in order to solve this problem for 
humanity and all living species on the planet once and for all. 
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