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ABSTRACT 

This article presents an overview about the basis of estimators 

of connectivity, such as Directed Transfer Function (DTF) 

and Partial Directed Coherence (PDC), their differences and 

their applicability in the estimation and analysis of functional 

brain connectivity. 

I. INTRODUCTION 

It is well known that behind every our behaviour, physical or 

mental, specific brain regions are activated. During execution 

of a task, different activities are performed simultaneously 

therefore different brain regions are evoked. Neuroimaging 

concerns with building brain maps that reveal where the 

cortical activations appear during the execution of a task. For 

many years, the monitoring of the electrical signals derived 

from the brain regions have been used for inferring functional 

aspects of many normal and pathological brain processes. The 

central question is does or how these regions that are involved 

in the task, cooperate one to each other during the execution 

of the task. How to define the information flow between the 

cortical activities? Is there any connectivity pattern between 

the brain regions? Different types of connectivity are defined. 

Anatomical connectivity represents the existence of 

anatomical links allowing the information flow from a 

cerebral district to another one. Effective connectivity 

represents the simplest brain circuit that would produce the 

same temporal relationship as observed experimentally 

between cortical sites. Functional connectivity represents the 

existence of temporal correlation / coherence between the 

brain activity recorded in different cerebral sites. In this 

article we concern with the techniques and estimators that are 

used to obtain functional connectivity. 

     Norbert Wiener defined causality for the first time. Given 

two simultaneously measured signals, if one can predict the 

first signal better by incorporating the past information from 

the second signal than using only information from the first 

one, then the second signal can be called causal to the first 

one (Wiener, 1956). The economist Clive Granger [1] in 1969 

gives mathematical formulation of the Wiener definition and 

introduces the concept of Granger Causality, which we refer 

later in this article. Kaminski and Blinowska have  introduced 

the Directed Transfer Function [2, 3] which can be used to 

determine the directional influences between any given pair 

of channels in a multivariate dataset. Another estimator, 

Partial Directed Coherence is introduced by Baccala and 

Sameshima [4] as a factorization of the partial coherence. 

This estimator is of particular interest in applications to brain 

signals. Both of these parameters include the concept of 

Granger Causality in them and in this article we stress the 

differences between the two. Also, a time-varying functional 

cortical connectivity can be obtained using these parameters 

[5]. In that way, the whole communication between the brain 

regions can be monitored and described during the execution 

of a given task. Using these parameters for obtaining 

functional connectivity, many applications in clinical 

neurophysiology have been obtained [6, 7, 8] that explain 

some neurophysiological behaviours. 

II. AUTOREGRESSIVE MODELING AND GRANGER CAUSALITY 

 

If we have a time series of a signal, one can try to predict the 

future values of the signal using an autoregressive filter as 

linear predictor. The linear predictor is defined as:  
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The goal is to determine the coefficients a(k) by minimizing 

the power of the prediction error:  
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Given two time series a(t) and b(t), a(t) is said to Granger-

cause b(t) if the insertion of a(t)’s past into an autoregressive 

modelization of b(t) significantly improves the prediction of 

b(n), that is, if it reduces its prediction error. By means of 

bivariate autoregressive modelling of a(t) and b(t): a(t) is said 

to Granger-cause b(t) if by inserting a(t)’s past samples in the 

autoregressive modelization of b(t) this can reduce the 

prediction error. Here we have directionality of the form 

a(t)→b(t), or a(t) Granger-causes b(t). It can be a(t)→b(t) 

without necessarily being b(t)→a(t). 

A. Bivariate modeling 

Let x(t) and y(t) denote the time series from two data 

channels. Suppose that the temporal dynamics of x(t) and y(t) 

are given by the following bivariate autoregressive relations: 
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(3)      

Consider the univariate case, when we describe the signals 

using the autoregressive modelling: 
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In the univariate case, ax and ay are the model parameters, p is 

the model order and ex and ey are the uncertainties or the 

noises associated with the model. Here, the prediction error 

depends only on the past values of the own signal. Now 

consider the bivariate case. Here, the prediction error for each 

individual signal depends on the past values of both signals. 

The performances of the prediction for both models can be 

assessed with the variances of the prediction errors. Let 

var(ex) and var(ey) be the variances of the prediction errors of 

x(t) and y(t) respectively for the univariate case, and var(exy) 

and var(eyx) the variances of the prediction errors of x(t) and 

y(t) respectively for the bivariate case. The measure of 

Granger causality from y to x can be expressed as  
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If the past value of y does not improve the prediction of x, 

then var(ex) ≈ var(exy) and Gy→x = 0. Any improvement of the 

prediction of x by inclusion of y makes var(exy)↓, therefore 

Gy→x ↑. Similarly, the measure of Granger causality from x to 

y can be defined as: 
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B. Multivariate modeling 

If we have more than two data channels, one can use bivariate 

methods for estimating the causality links between the 

signals. Namely, a bivariate model would be obtained for 

every pair of data channels. But when we have multiple 

signals, bivariate methods have limitations. Consider the 

following scenario with three signals: signal 3 causes signal 1 

and signal 2. Or in other words, the causality links that exist 

are 3→1 and 3→2. If we use the bivariate method for 

modelling the influence signal 1 has on signal 2, than the 

connectivity pattern obtained would be that there is a casual 

link between these signals, or there exist 1→2. The model 

does not recognize that this influence is because of the signal 

3. The model is not aware of the common effect of signal 3. 

Multivariate method builds a unique model so that the 

connectivity pattern that is obtained takes into account all the 

signals in the set and all their interactions. Multivariate 

methods by building a unique model that is based on all the 

signals use all the information at disposal and allow a better 

comprehension of the relationship between the signals. Given 

the set of signals: 
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The multivariate autoregressive model of order p is: 
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The model parameters are the N variances of the noises: 
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And the coefficients a(k): 
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III. DIRECT TRANSFER FUNCTION AND PARTIAL DIRECTED 

COHERENCE 

One of the limitations of the causality estimation is the time 

domain of the signals. Given the signals in the time domain, 

the time window used to identify the model provided that the 

signals are stationary in that time window. The frequency 

domain contains more information about the signal, as how 

much of the signal lies within each given frequency, so it is 

practical to obtain pattern of connectivity in the frequency 

domain. 

A. MVAR in frequency domain 

To obtain the multivariate autoregressive (MVAR) model in 

the spectral domain we Fourier transform equation (1) to 

obtain: 
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Where: 
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B. Direct Transfer Function - DTF 

If we continue further to solve matrix equation (11) to obtain 

X(f), we get:   
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Where: 
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Is the transfer matrix of the MVAR filter. On the basis of 

matrix H(f), Blinowska and Kaminski [2] defined the 

Directed Transfer Function (DTF) from j to i as: 

 
2
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Since, Hij ≠ Hji, it is obvious that Θij ≠ Θji also. The value of 

DTFij at a certain frequency f0 represents the existence of a 

causality link directed from j to i.  

C. Partial Directed Coherence - PDC 

 Baccala and Sameshima [4] defined Partial Directed 

Coherence (PDC) on the basis of matrix A(f) from equation 

(11): 
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Similar as with the DTF, since Hij ≠ Hji,, Θij ≠ Θji also. The 

value of PDCij at a given frequency represents the exsistence 

of a causality link directed from j to i. 

     As it can be seen, the mathematical definition of DTF and 

PDC is different. Due to their mathematical formulation and 

matrix inversion, there are some differences between these 

two parameters. DTF describes the sum of all influences 

(direct and indirect) directed from i to j. PDC describes only 

direct influences. That means if there is no direct influence 

between two signals, DTF can still have some significant 

value, while PDC does not. Depending on the kind of 

information we are interested in, we can decide which one we 

need to use.  

IV. DISCUSSION 

After we pointed the two popular estimators of connectivity, 

it is time to address their appliance in neuroscience. With the 

help of electroencephalogram (EEG) one can measure the 

brain signals that correspond to the patient current behaviour. 

The EEG cap is consisted of certain number of electrodes. 

Each electrode is placed on top of a certain brain region and 

records the potential from the activity that is present in that 

brain region. Each electrode is source of an electric signal, so 

the number of model parameters depends on the number of 

electrodes placed on the patient’s head. Furthermore, when 

investigating some specific behaviour, one can choose 

specific regions of interest, and take into account the signals 

that are generated from the electrodes on top of these regions. 

Once we obtain the connectivity pattern between the regions 

of interest, we can observe the information flow between 

brain regions during the state in which the patient is recorded. 

Moreover, once we got the connectivity pattern, one can build 

a directed graph on it, and use the powerful tools form graph 

theory to calculate some graph parameters who can describe 

somehow describe the process that is taking place on the 

specific network.  
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