
Abstract — Recent results in pattern recognition have 
shown that SVM (Support Vector Machine) classifiers often 
have superior recognition rates in comparison to other classi-
fication methods. In this paper, a cooperation of four SVM 
classifiers for handwritten digit recognition, each using dif-
ferent feature set is examined. We investigate the advantages 
and weaknesses of various cooperation schemes based on 
classifier decision fusion using statistical reasoning. The ob-
tained results show that it is difficult to exceed the 
recognition rate of a single, well-tuned SVM classifier 
applied straightforwardly on all feature sets. In our 
experiments only one of the cooperation schemes exceeds the 
recognition rate of a single SVM classifier. However, the 
classifier cooperation reduces the classifier complexity and 
need for training samples, decreases classifier training time 
and sometimes improves the classifier performance. 
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I. INTRODUCTION

ombining features of different nature and the corre-
sponding classifiers has been shown to be a promising 

approach in many pattern recognition applications. Data 
from more than one source that are processed separately 
can often be profitably re-combined to produce more con-
cise, more complete and/or more accurate situation de-
scription. In this paper, we discuss classification systems 
for handwritten digit recognition using four different fea-
ture sets and SVM classifiers [1]. We start with a SVM 
classifier applied on all features as one set. Further, we 
used four SVM classifiers that work on the different 
feature sets for the same digit image. As the feature sets 
“see” the same digit image from different points of view, 
we examined the possibility of decision fusion using 
statistical cooperation schemes. An extensive number of 
cooperation schemes were examined and corresponding 
recognition results are presented. Our aim was not to 
compete with the recognition rates of the other 
handwritten digit recognition systems e.g. [2], [3], but to 
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compare the qualities of different feature sets, 
corresponding SVM classifiers and their combination 
based on different decision fusion schemes. 

The presented results show that it is difficult to achieve 
the recognition rate of a single optimized SVM classifier 
applied on the feature set that includes all features by 
combining the individual SVM decisions. On the other 
hand, the cooperation of individual classifiers designed for 
separate feature sets reduce the classifier complexity and 
need for training samples, offering better opportunity to 
understand the role of the features in the recognition 
process.

II. THE SYSTEM ARCHITECTURE

The recognition system is constructed around a modular 
architecture of feature extraction and digit classification 
units. The preprocessed isolated digit images are input for 
the feature extraction module that transfers the extracted 
features toward SVM classifiers (Fig. 1). 
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Fig. 1. The system architecture 

Each image is centered in a square bounding box, and 
then slant correction is performed. The slant angle is esti-
mated as the inclination of the line connecting the gravity 
centers of the top 25% part and the bottom 25% part of the 
image (Fig. 2a). Then a sub-pixel precision shear 
transformation is performed in order to remove the esti-
mated inclination.  

Four feature sets were extracted from each digit image:  
 projection histograms, 
 contour profiles,  
 ring-zones and  
 Kirsch features. 
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Feature extraction was performed on the original un-
scaled image, after the slant correction.

The first 23 features (FS1) are simple horizontal, verti-
cal and diagonal projection histograms. Since not all of the 
character images were of the same size, the projection 
vectors were linearly rescaled in order to obtain 7 features 
from the horizontal projections, 6 features from the 
vertical projections, and 5 features from each of the two 
diagonal projections (Fig. 2b). 

     

    

 (a) (b) 
Fig. 2. (a) Slant correction; (b) Projection histograms 

The second feature set (FS2) is composed of 30 contour 
profile features (Fig. 3). The image is scanned from left to 
right, top to bottom, right to left and bottom to top, 
respectively. The distance from the corresponding edge of 
the image to the first black pixel which the scanning line 
intersects, represent the contour profile features on the 
first level. The distance to the first black pixel of the 
second black pixel run represent the contour profile 
features on the second level. Since not all of the character 
images were of the same size, the profile vectors were 
linearly rescaled in order to obtain 6 features from the left 
and right contour profiles and 5 features from the upper 
and lower profiles on the first level of the digit image. 
Finally, 4 features were extracted from the upper and the 
lower contour profiles of the second level.  

Fig. 3. Contour profiles of first and second level 

The third feature set (FS3) contains 44 features 
extracted as pixel counts in rings zones around the gravity 
center of the image (Fig. 4). We have used three rings, 
each divided in different number of equal zones. The 
outermost ring has a radius r equal to the distance from the 
gravity center to the furthest black pixel of the image. The 
first ring with radius 0.2·r provides 4 features and the 
second ring with radius 0.5·r provides 24 features. The last 
16 features of this group are provided from the outermost 
ring.  

The last group of 72 features (FS4) use Kirsch operator 
[4] to detect local directional information of the edges of 
the input pattern. Compared to chain codes that also 

describe the edge direction, Kirsch edge detection is more 
robust even under noisy conditions.

Fig. 4. Ring-zone features 

The first black pixel which the scanning line intersects 
forms the first outermost periphery. The second black 
pixel which is the starting point of the second black pixel 
run forms the second outermost periphery (Fig. 5). When 
the image is scanned in horizontal direction, the vertical 
and both diagonal Kirsch features are extracted at the 
outermost periphery. When the image is scanned in 
vertical direction, the horizontal and both diagonal Kirsch 
features are extracted at the outermost and second outer-
most periphery. This way, 3 Kirsch directional features are 
provided for each periphery pixel. The feature vectors are 
again linearly rescaled to 15 features coming from the left 
and right periphery each, 12 features coming from the first 
outermost top and bottom periphery each, and 9 features 
coming from the second outermost top and bottom periph-
eries.
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Fig. 5. Kirsch features 

Kirsch feature extraction is performed on the grayscale 
digit images using sub-pixel precision. All parameters in-
cluding the number of features by projection, the radiuses 
of rings for zone-pattern regions and the number of fea-
tures coming from the outermost peripheries for Kirsch 
features are carefully chosen after several iterations using 
observations about their discriminative power. The fea-
tures were preprocessed for zero mean and unit variance. 

III. THE RECOGNITION RESULTS

Our experiments were performed on an extract of the 
well-known NIST (National Institute of Standards and 
Technology) handwritten digit database. This database is 
consisted of 7 partitions denoted as: hsf_0, …, hsf_4, 
hsf_6 and hsf_7. Digit images from the hsf_0 partition 
were used for classifier training while the tuning of classi-
fier parameters (kernel width  and penalty C) was per-
formed using the hsf_1 partition. The final recognition 
rates were estimated on most difficult partition hsf_4. So, 
the samples in the test set belong to different writers from 
those in the learning set.  

We used SVMs with Gaussian kernel because it pro-
vided better recognition rates then linear, polynomial or 
sigmoidal kernel. Because of the large number of samples 
we have used SVMTorch that is a more robust variation of 
SVM software library [5]. 
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The recognition rates of different classifier cooperation 
schemes applied on the described 4 feature sets: FS1, FS2, 
FS3 and FS4 are given in Table 1. In the second column 
the corresponding cooperation scheme is given, followed 
by the recognition rate and the rank of the cooperation 
scheme when combining classifiers are trained using 
2000, 10000, 30000 and all 53449 available samples. 

The first 4 rows show recognition rates of each feature 
set individually. The classifier dependency coefficient [6] 
of the four individual classifiers is given in row a). The 
row b) gives the recognition rates of a single optimized 
SVM classifier applied on the four feature sets as a whole. 
The row c) gives the recognition rate of a hypothetical 
“oracle” cooperation scheme that knows to choose the 
right class if it is predicted by at least one of the member 
classifiers. This gives the theoretical upper bound of the 
recognition rate achievable by classifier decision fusion. 

Some of the decision fusion methods like: Product, 
Dempster Rule, Fuzzy Integral, and Decision Templates 
require possibilistic outputs. To map the original output 
values to [0, 1] interval we used the mapping 1/(1+e-x).

Cooperation schemes that need no extra parameters to 
perform the fusion of the individual classifiers’ outputs 
into a single decision are known as fixed cooperation 
schemes (1,2,5-11). More advanced cooperation schemes 
utilize extra parameters in the process of fusion, trying to 
utilize individual classifier advantages and their dependen-
cies. These parameters are usually designated in the 
process of so called combiner training. Such cooperation 
schemes are also known as trained cooperation schemes. 

The cooperation schemes 1-4 are voting schemes in-
cluding variations of the Borda count that is a generaliza-
tion of the majority vote [7]. The  cooperation schemes 
5-12 use various averages, maximum and minimum 
selectors of the corresponding classifier outputs to make 
the final decision [8]. The Dempster Rule [9] and a few 
variations [10] are given in rows 13-22. The naive Bayes 
cooperation scheme given in rows 23-24 uses the 
confusion matrices of member classifiers to estimate the 
certainty of the classifier decisions [11]. The fuzzy 
integration 25-26 is based on searching for the maximal 
grade of agreement between the objective evidence 
(provided by the sorted classifier outputs for i-th class) 
and the expectation (the fuzzy measure values of all 
classifiers) [12]. We have also used a variety of decision 
template schemes 27-31 described elsewhere [13]. The 
generalized committee prediction and its variations 32-36 
are based on a weighted combination of the predictions of 
the member classifiers [14]. Cooperation scheme 37 uses 
multivariate linear regression to make decision fusion. In 
the cooperation scheme 38 the 4 individual SVM outputs 
(40 features) are input to another SVM classifier. This 
kind of cooperation is also known as classification task 
[9]. 

Table 1 shows that the cooperation 38 (svmcmb) has 
unbeatable recognition rate in all cases. However, this 
method is most complex because it needs additional classi-
fier and additional samples for its training.  

TABLE 1: RECOGNITION RATES (%) OF COMBINING SVMS FOR 4
FEATURE SETS AND DIFFERENT SIZES OF LEARNING SET (2000,
10000, 30000 AND ALL 53449 SAMPLES); R STANDS FOR RANK.

2000 R 10000 R 30000 R All R

FS1 86.16 89.80 91.98 92.77
FS2 89.99 93.19 94.88 95.34
FS3 89.60 92.41 94.78 95.15
FS4 91.52 94.10 95.71 96.10

a) cdc 0.628 0.701 0.736 0.767

b) Single Opt. 
SVM 94.10 95.84 97.15 97.27

c) oracle 96.88 97.88 98.47 98.70
1 vote 92.26 35 94.37 35 96.05 36 96.32 35
2 borda 92.73 27 94.85 30 96.28 30 96.62 25
3 bks 92.54 31 94.04 37 95.40 38 95.72 38
4 bksv 93.52 7 95.01 21 96.27 31 96.52 32

5 avg 93.01 18 95.03 18 96.38 23 96.66 22
6 prod 92.61 29 95.09 16 96.54 15 96.71 19
7 harm 92.36 34 94.99 26 96.44 21 96.61 28
8 cprod 92.38 33 94.89 28 96.45 20 96.69 20
9 maxmax 91.58 37 94.25 36 96.08 35 96.27 36

10 minmax 91.81 36 94.66 34 96.21 34 96.36 34
11 med 92.87 23 95.02 19 96.41 22 96.67 21
12 davg 92.93 20 94.99 25 96.31 26 96.62 26

13 demp 92.85 24 94.89 29 96.24 33 96.61 27
14 dempas 93.56 6 95.22 9 96.54 16 96.94 5
15 dempchi 93.10 15 95.18 12 96.54 17 96.75 13
16 dempchi2 93.14 14 95.20 11 96.60 8 96.79 12
17 dempbc 93.01 19 95.11 14 96.55 13 96.72 17
18 demphl 93.25 9 95.26 7 96.58 10 96.79 11
19 dempchr 93.68 4 95.22 10 96.53 18 96.93 7
20 dempchr2 93.23 12 95.25 8 96.59 9 96.80 10
21 dempjac 92.90 22 95.06 17 96.49 19 96.71 18
22 dempper 93.05 17 95.16 13 96.55 11 96.74 15

23 pprod 92.74 26 95.10 15 96.54 14 96.73 16
24 bayes 93.24 11 95.01 22 96.32 24 96.66 23
25 fi 92.62 28 94.78 32 96.27 29 96.55 30
26 fic 92.47 32 94.74 33 96.30 28 96.53 31

27 dtp1 93.06 16 95.00 23 96.27 32 96.48 33
28 dtp2 93.18 13 94.97 27 96.31 27 96.61 29
29 dtp3 93.26 8 95.02 20 96.32 25 96.63 24
30 dtp4 91.13 38 93.90 38 95.50 37 95.85 37
31 dtm 94.48 2 95.77 2 96.74 4 96.93 6

32 epw 92.59 30 95.00 24 96.55 12 96.74 14
33 gc 92.92 21 95.28 6 96.63 7 96.86 9
34 mgc 93.24 10 95.44 5 96.64 6 96.91 8
35 ogc 93.56 5 95.54 4 96.82 2 97.04 2
36 omgc 92.80 25 94.82 31 96.70 5 97.01 3
37 mlr 94.44 3 95.75 3 96.76 3 96.95 4
38 svmcmb 97.36 1 97.48 1 97.78 1 97.82 1
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Increasing the number of training samples, indeed in-
creases recognition rates of individual classifiers and their 
cooperation. On the other hand, increasing recognition 
rates of individual classifiers also increases their 
correlation that reduces the possibility for improvement of 
the cooperation recognition rates. 

Voting cooperation schemes (1-4) are among worst be-
cause they use most limited information of member classi-
fiers, ignoring useful information about second choices, 
reliability of the choice, distribution of the choices for dif-
ferent classes, etc. 

The simplest cooperation schemes (5-12) as we ex-
pected, have average recognition rates and should be used 
in not demanding applications. 

It is interesting that Dempster Rule and its variations 
(13-22) have in average better recognition rates than deci-
sion templates schemes (27-31).  

The naive Bayes cooperation schemes (23-24) are rela-
tively good choice while the fuzzy integration (25-26) 
shows weak results. 

The generalized committee prediction and its variations 
(32-36), together with multivariate linear regression (37) 
are among the best methods and should be considered as 
serious candidates for implementation in any serious 
pattern recognition application based on classifier 
cooperation. 

It is interesting to see how accuracy of classifier coop-
eration methods depend on the accuracies of individual 
classifiers (Fig. 6).

In case of trained cooperation schemes such as: decision 
templates (27-31), linear regression (37) or classification 
task (38) the cooperation accuracy is far less dependent of 
the individual classifiers accuracies comparing to the fixed 
cooperation schemes such as: voting (1-4) or averages (5-
12). Our experiments show that as long as we can dispose 
enough samples for cooperation training, the accuracies of 
the individual classifiers become less important. 
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Fig. 6. Accuracy of some of classifier cooperation 
method as a function of the accuracies of individual 
classifiers

Fig. 6 shows that accuracy of classification task (38) is 
practically independent of the accuracies of the individual 
classifiers. In case of the other trained cooperation 
schemes this dependence is relatively week, while in case 
of fixed cooperation, this dependence is almost linear. 

IV. CONCLUSION

In this paper, the cooperation of four feature sets for 
handwritten digit recognition using SVM classifiers is ex-
amined. We investigate an extensive number of coopera-
tion schemes based on classifier decision fusion.   

The presented results show that it is difficult to achieve 
the recognition rate of a single SVM applied on the feature 
set that includes all features by combining the individual 
SVM decisions. These results impose the crucial question: 
whether the methods for classifier cooperation are still 
needed [15] or pattern recognition tasks could be better 
solved by a single, well-optimized SVM classifier. 
However, the classifier cooperation schemes reduce the 
classifier complexity and need for samples, and sometimes 
can increase the classifier performance. 
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