
Using Data Mining Technique for Coefficient
Tuning of an Adaptive Tabu Search

Elena Ikonomovska*, Dejan Gjorgjevik*, Suzana Loskovska*
* University Ss. Cyril & Methodius, Faculty of Electrical Engineering and Information Technologies,

Skopje, Republic of Macedonia, elenai@feit.ukim.edu.mk, dejan@feit.ukim.edu.mk, suze@feit.ukim.edu.mk

Abstract— This paper describes the Adaptive Tabu Search
algorithm (A-TS), an improved tabu search algorithm for
combinatorial optimization. A-TS uses a novel approach for
evaluation of the moves, incorporated in a new complex
evaluation function. A new decision making mechanism
triggers the evaluation function providing means for
avoiding possible infinite loops. The new evaluation function
implements effective diversification strategy that prevents
the search from stagnation. It also incorporates two
adaptive coefficients that control the influence of the
aspiration criteria and the long-term memory, respectively.
The adaptive nature of A-TS is based on these two adaptive
coefficients. This article also presents a new data mining
approach towards improving the performance of A-TS by
tuning these coefficients. A-TS performance is applied to the
Quadratic Assignment Problem. Published results from
other authors are used for comparison. The experimental
results show that A-TS performs favorably against other
established techniques.

Keywords—data mining, heuristic, coefficients tuning, tabu
search, quadratic assignment problem.

I. INTRODUCTION
Heuristic search algorithms have proven to be very

useful in solving difficult combinatorial optimization
problems. Due to their ability to escape local optima, most
successful heuristic local search techniques are Simulated
Annealing, Genetic Algorithms, and Tabu Search with its
variations. Tabu Search has been very successful in
achieving near-optimal (and sometimes optimal) solutions
to a variety of hard problems.

This paper introduces the Adaptive Tabu Search (A-
TS), an improved tabu search algorithm for combinatorial
optimization. Adaptive Tabu Search introduces a new
evaluation function to the basic scheme of Tabu Search.
Our Tabu scheme also proposes a new mechanism for
selecting the best move. The selection process uses the
evaluation function, which incorporates both long-term
memory and aspiration criteria. The evaluation function
used in this process involves several parameters and
coefficients. Choosing appropriate values for these
parameters has great impact on A-TS performance. To
achieve better performance, coefficient tuning was
performed applying data mining techniques.

The performance of our A-TS is evaluated by using
instances of the Quadratic Assignment Problem (QAP),
chosen from the QAP Library (QAPLIB) [1]. By solving
the same problem instances of QAP used by other cited
researchers [2][3][4][5], we aimed to derive objective
conclusions of the advantages of our Adaptive Tabu

Search and of the use of data mining techniques for
optimizing the performance of meta-heuristic algorithms.

Section II presents a formal definition of the QAP.
Section III provides a brief overview of the basic Tabu
Search algorithm and its popular variations. In section IV,
we describe the main improvements that we propose to
the basic TS algorithm, resulting in our Adaptive Tabu
Search (A-TS) algorithm. The environment used to test A-
TS is described in section V. The implementation issues
of a data mining technique for coefficients tuning are
addressed in section VI. Section VII presents the
experimental results. Our conclusions and areas of further
research are given in section VIII.

II. THE QUADRATIC ASSIGNMENT PROBLEM
The Quadratic Assignment Problem (QAP) is NP-hard

combinatorial optimization problem [6]. Its many practical
instances come from areas such as design and resource
allocation, microprocessor design and scheduling. Due to
the complexity of QAP, in some ways, QAP has become a
benchmark by which new techniques are validated.

For the first time, Koopmans and Beckman stated QAP
in 1957 [7]. It can be described as follows: Given two n×n
matrices A=(aij) and B=(bij), find a permutation π*
minimizing

∑∑
==Π∈

⋅=
n

j
π(i)π(j)ij

n

in
baf

11)(
)(min π

π

where П(n) is the set of permutations of n elements.

In other words, it deals with identifying optimal

assignments of facilities to locations such that the cost of
the resulting system is minimized. Shani and Gonzalez [6]
have shown that the problem is NP-hard and that there is
no ε-approximation algorithm for the QAP unless P = NP.

While some NP-hard combinatorial optimization
problems can be solved exactly for relatively large
instances, QAP instances of size larger than 20 are
considered intractable. In practice, a large number of real
world problems lead to QAP instances of considerable
size that cannot be solved exactly. For example, an
application in image processing requires solving more
than 100 QAP problems of size n = 256 [8]. Even with
today’s fastest computers, relatively small problems
require prohibitive amounts of time to solve to provable
optimality [9]. The use of heuristic methods for solving
large QAP instances is currently the only practicable
solution.

EUROCON 2007 The International Conference on “Computer as a Tool” Warsaw, September 9-12

1-4244-0813-X/07/$20.00 2007 IEEE. 706

III. TABU SEARCH OVERVIEW
Glover introduced Tabu Search (TS) in the late 80’s

[10][11][12]. The basic idea behind TS is that, adding
short-term memory to local search, improves its ability to
locate optimal solutions. Revisiting previously or recently
visited solutions is discouraged, and operations that would
do so are labeled as being “tabu” or “taboo”. Glover
proposed the use of both statically and dynamically sized
memory structures for tracking tabu operations. In 1991
Taillard created the Robust Tabu Search (RO-TS) [5],
which introduced a dynamic randomly sized short-term
memory design. Battiti and Tecchiolli developed the RE-
TS [2] in 1994. They introduced a dynamically sized
short-term memory, dependent on the runtime
characteristics of the algorithm. In addition, they utilized a
form of long-term memory that helped prevent searches
from stagnating.

Many other TS variations have been developed that
incorporate various forms of dynamically sized short-term
memory and long-term memory [13][14]. Still, the RO-TS
and RE-TS remain among the most successful and
popular. The following concepts are common to most (if
not all) Tabu Search techniques, but their specific
implementations are somewhat flexible.

A move m is an operation by which one solution is
transformed into a new, neighboring solution. The
neighborhood of the solution, N(i,k), is the set of all
solutions that can be derived from the given solution i, at
iteration k, by applying a valid move. For the QAP, a
common move strategy consists of swapping facilities
assigned to two locations.

The Tabu List implements the short-term memory. It is
the most influential piece of any TS design. The basic
purpose of the list is to maintain a record of moves that
are tabu (discouraged) during a number of following
iterations. Usually, a move added to the Tabu List is the
reciprocal of the move last accepted and applied to the
current solution. The reciprocal is recorded to prevent the
search from “undoing” recent moves.

The main weakness of TS is its tendency to explore a
too limited region of the search space, i.e., the search
lacks breadth, unless systematic and effective
diversification schemes are used [15]. During a TS run, it
is possible that a single solution will be visited multiple
times. To some degree, this behavior is desirable - it
supports the concepts of exploitation and exploration. On
repeated visits of a solution, the Tabu List will most likely
contain a different set of tabu moves, and the search may
travel a new path. However, the problem arises when the
algorithm continuously revisits the same set of solutions
repeatedly (infinite loop), leaving large areas of the search
space unexplored. By increasing the length of the list, the
probability of entering an infinite loop decreases. On the
other hand, longer lists limit the exploration of the search
space. The so-called long-term memory has a great deal in
solving this problem.

When selecting the next move to perform, TS evaluates
the neighborhood of the current solution and attempts to
find the best non-tabu move; “best” being determined as
the objective value of the resulting solution, should the
move be applied. Sometimes, however, it may be
desirable to allow a tabu move to be chosen. The
conditions under which a tabu move would be allowed are
known as the aspiration criteria. The most common

aspiration a criterion is to test whether the implementation
of the tabu move would result in the best-fit solution yet
found, for the current run. Battiti and Tecchiolli used the
above criterion in the RE-TS. Fig.1 shows the pseudo
code of TS:

TABUSEARCH()

1 Create an initial solution i at random. Set i*=i and k=0.
2 Set k=k+1 and generate a subset V* of solutions in N(i,k) such

that either one of the tabu conditions tr(i,m)∈Tr is violated
(r=1,...,t) or at least one of the aspiration conditions ar(i,m)
∈Ar(i,m) holds (r=1,...,a).

3 Choose a best j=i∈m in V* (with respect to objective function f)
and set i=j.

4 If f(i) < f(i*) then set i*=i.
5 Update tabu and aspiration conditions.
6 If a stopping condition is met then stop. Else, go to step 2.

Fig. 1. The pseudo-code of Tabu Search algorithm.

IV. THE ADAPTIVE TABU SEARCH
The Adaptive Tabu Search, that we propose, explores

the meaning of finding the “best” move. The search for
the best move is a very computation demanding operation.
Therefore, it plays a major part in the speed and accuracy
of the solving process. The local search in TS consists of
evaluating all moves applicable to the current solution,
and choosing the best one. In the A-TS approach, the non-
tabu move that generates the greatest improvement of the
objective function is chosen and applied. In this case, no
aspiration criteria are being utilized. However, in some
instances, none of the evaluated non-tabu moves provides
any improvement. The proposed evaluation function is
triggered only when all evaluated moves are tabu or non-
improving, non-tabu. The move for which the evaluation
function returns the lowest value is accepted and
performed.

Any implementation of TS must provide a balance
between exploring and exploiting the search space. The
risk of visiting certain solutions infinite number of times
must be avoided. On the other hand, the potential benefit
from revisiting a single solution has to be encouraged. The
aim of A-TS is to achieve this balance and maintain it
throughout the whole search.

The evaluation function makes its decisions considering
the long-term memory and the remaining time for the
move as tabu (tabu_time_left). The long-term memory is
implemented as a list of counters, remembering the
application of each possible move during the search. In
the evaluation function, the number of occurrences of the
move (frequency) is multiplied with an adaptive
coefficient (k1). The value of k1 is proportional to the
value of the move itself (move_value), the frequency of
the application of the move and the current iteration. The
main objective of this adaptive coefficient is to prevent the
search from being caught in an infinite loop. This is done
by discouraging moves that have been frequently applied.
This implements successful diversification strategy, as it
will be shown in section 7.

On the other hand, the function includes an aspiration
criterion. It allows a tabu move to be performed, if it
seems promising and not risky in terms of loops or local
stagnation. This criterion is implemented using another
adaptive coefficient (k2), whose value also changes and is

707

proportional to the value of the move. This is because a
tabu move with value much greater than the rest of the
nonimproving, nontabu or tabu moves in a current
iteration will be the best move according to the evaluation
function even if it has been applied very recently. When
applied the adaptive coefficient k2, a move will be
discouraged according to the value of the move.

The adaptive nature of our Tabu Search scheme is
based on these two adaptive coefficients. Their values
change with every iteration. The final form of the
evaluation function is:

lefttimetabukfrequencykvaluemove
lefttimetabufrequencyvaluemovefunctionevaluation

)__,,_(_

21 ⋅+⋅+
=

 (1)

where:

≤⋅
>⋅⋅

=
avgfreqfreqvaluemoveabsc
avgfreqfreqvaluemoveiterc

k
 if),_(
 if),1,_max(

2

1
1

 (2)

⋅
=

tabuismovevaluemoveabsc
tabunotismove

k
if),_(
if,0

2
2

 (3)

and iter is the current iteration.

The coefficients k1 and k2 control the influence of the
move frequency and the remaining time of the move in the
tabu list. These coefficients drive the heuristic. Therefore,
their influence upon the accuracy of the obtained solutions
is significant. Since their values also depend on the values
of coefficients c1 and c2, scientific method should be
applied for fine-tuning these coefficients.

V. BENCHMARK INSTANCES
The problem instances used in the development and

testing of A-TS are obtained from the QAPLIB, a public
library of QAP problems and their best-known solutions
[1]. The problems are organized into sets, with each set
named after the author(s) who developed the group of
problems. The number in the problem’s name corresponds
to the size of the problem. QAPLIB currently contains
over 100 instances that have been used in earlier
researches. Some of them originate from real life
applications, like hospital layout (kra30*, els19),
typewriter design (bur26*), etc. Most of these problems
come from practical applications or they are randomly
generated with non-uniform laws that imitate the
distributions observed on real world problems.

As shown by Taillard [8], the quality of solutions
produced by heuristic methods strongly depends on the
problem type, that is, the structure of the data matrices A
and B. For problems taken from the real world, many
heuristic methods perform rather poorly. They are not able
to find solutions within 10% of the value of the best
solutions known, even if excessive computing time is
allowed. Moreover, the poor performance occurs even for
small size problems. Conversely, the same methods may
perform very well on randomly generated problems. For

such problems, almost all heuristic methods are able to
find high quality solutions (i.e., solutions approximately
one percent worse than the best solution known).
Therefore, it is reasonable to analyze the performance of
A-TS by splitting the problem instances into two
categories: (i) real world, irregular and structured
problems, and (ii) randomly generated, regular and
unstructured problems.

VI. COEFFICIENTS TUNNING
The performance of tabu search algorithms depends of

many search parameters such as tabu tenures, move
selection probabilities, coefficients etc. Significant
performance benefits can be achieved by determining
appropriate values for these search parameters. In this
paper, we present an implementation of a data mining
method for optimizing the coefficients c1 and c2
incorporated in the evaluation function, to improve the
performance of A-TS.

When improving the performance of a certain
algorithm the goal is to increase the accuracy and
minimize the time needed for producing satisfactory
solutions. The coefficients c1 and c2 are part of the
evaluation function that plays a major role in the speed
and accuracy of the search. Determining the relationships
between the coefficients c1 and c2 and the number of
iterations needed for producing optimal or near optimal
solutions, would provide valuable information for
improving the performance of the algorithm. This kind of
relationships or associations can be discovered by the use
of data mining algorithms for mining association rules in
large data sets. The process is known as association rule
mining.

The process of inducing association rules consists of
two steps:

Step1: Finding all frequent itemsets.
Step2: Generating strong association rules from the

frequent itemsets.

Among the best algorithms for mining Boolean

association rules in large sets of data is the Apriori
algorithm [16]. The algorithm uses prior knowledge of
frequent itemset properties to prune (reduce) the search
space. The name of the algorithm is based on this
property.

An item is a triple that represents either a categorical
attribute with its value, or a quantitative attribute with its
range. The value of a quantitative attribute can be
represented as a range where the upper and lower limits
are the same. We use the term itemset to represent a set of
items. A k-itemset is an itemset that contains k items. An
itemset is frequent if it satisfies minimum support
(min_sup) threshold, which can be set by user or domain
expert. Let I = {i1, i2, …, im} be a set of items. Let D, the
task relevant data, be a set of transactions where each
transaction T is a set of items such that T⊆I. An itemset
satisfies minimum support if the occurrence frequency of
the itemset is greater than or equal to the product of
min_sup and the total number of transactions in D.

708

The Apriori algorithm uses an important property
called the Apriori property that states: All non-empty
subsets of a frequent itemset must also be frequent. The
property is based on the following observation. By
definition, if an itemset I does not satisfy the minimum
support threshold, min_sup, then I is not frequent, If an
item A is added to the itemset I, then the resulting itemset
{i.e., I ∪ A} cannot occur more frequently than I.
Therefore, I ∪ A is not frequent either. This property is
used to improve the efficiency of the level-wise
generation of frequent itemsets. A level-wise generation
is an iterative search, where k-itemsets are used to
explore (k+1)-itemsets. First, the set of frequent 1-
itemsets is found. This set is denoted L1. L1 is used to find
L2, the frequent 2-itemsets, which is used to find L3, and
so on, until no more frequent k-itemsets can be found.

The generation of frequent itemsets is a two-step
process, consisting of join and prune actions.

In the join step, to find a frequent set of k items Lk, a
set of candidate k-itemsets is generated by joining Lk-1
with itself. This set of candidates is denoted Ck. The join
is performed where members of Lk-1 are joinable, that is,
if they have (k-2) items in common.

In the prune step, the Apriori property is employed to
remove candidates that have a subset that is not frequent.
The candidate set Ck is a superset of Lk. Its members may
or may not be frequent, but all of the frequent k-itemsets
are included in Ck. A scan of the database to determine
the count of each candidate in Ck would result in the
determination of Lk (i.e., all candidates having a count no
less than the minimum support count are frequent by
definition, and therefore belong to Lk). Ck, however, can
be huge, and so this could involve heavy computation. To
reduce the size of Ck, the Apriori property is used as
follows. Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset. Hence, if any (k-1)-subset
of a candidate k-itemset is not in Lk-1, then the candidate
cannot be frequent either and so it can be removed from
Ck.

The pseudo-code for the Apriori algorithm is given on
Fig. 2.

Once the frequent itemsets from the transactions in D
have been found, it is straightforward to generate strong
association rules from them. To define a strong
association rule, additional definitions must be
introduced.

Let A be a set of items. A transaction T is said to
contain A if and only if A ⊆ T. An association rule is an
implication of the form A ⇒ B, where A ⊂ I, B ⊂ I and A
∩ B = ∅. The rule A ⇒ B holds in the transaction set D
with support s, where s is the percentage of transactions
in D that contain A ∪ B. The rule A ⇒ B has confidence c
in the transaction set D if c is the percentage of
transactions in D containing A which also contain B. That
is,

}{)(BAprobBASupport ∪=⇒ (4)

}|{)(ABprobBAConfidence =⇒ (5)

Rules that satisfy both a minimum support threshold

(min_sup) and a minimum confidence threshold
(min_conf) are called strong.

In this specific problem, the transaction set D was
generated by performing 10000 runs of the algorithm
A-TS. Ten different values for coefficients c1 and c2 were
used and one hundred different initial solutions as a
starting point for the search. The values for coefficient c1
vary in the interval [10, 100]. This is an arithmetic
progression where the first term is 10 and the common
difference is 10. The values for coefficient c2 are in the
interval [1000-1, 100-1]. Here the base changes with
arithmetic progression where the first term is 1000 and
the common difference is -100. One hundred different
seed values for generating the initial solution were used.
The table obtained consists of five quantitative attributes
(the number of iterations named num_iterations, the
difference between the produced and the optimal solution
named gap, seed, c1 and c2).

As it was previously stated, the Apriori algorithm is an
influential algorithm for mining frequent itemsets for
Boolean association rules. A boolean association rule
concerns associations between the presence or absence of
items. A quantitative association rule describes
associations between quantitative items or attributes.
Since our data set consists of quantitative attributes, we
refer to this mining problem as Quantitative association
rules problem.

APRIORI(D: database of transactions, min_sup: minimum support)

1 L1 is the set of frequent 1-itemsets;
2 k = 2;
3 while Lk-1 is not empty do{
4 Ck is the candidate set, generated by joining Lk-1 with itself;
5 for each transaction t ∈ D { // scan D for counts
6 Ct = subset(Ck , t); // get the subsets of t that are candidates
7 for each candidate c in Ct test whether it is frequent
8 c.count++; // scan D in order to determine the

//count of candidate c
9 }
10 Lk = {c ∈ Ck | c.count ≥ min_sup} // Lk is the collection of

//frequent sets c from Ck that are having count no less than
//min_sup

11 k++;
12 }
13 return L = ∪kLk;

Fig. 2. The Apriori algorithm for discovering frequent itemsets for
mining Boolean association rules.

The Boolean association rules problem can be

considered as a special case of Quantitative association
rules problem. Therefore, mapping the Quantitative
association rules problem into the Boolean association
rules problem will allow us to use any algorithm for
finding Boolean association rules in order to find
Quantitative association rules. If the quantitative
attributes in the table have only few values, this mapping
is straightforward. Conceptually, instead of having just
one field in the table for each attribute, there can be as
many fields as the number of attribute values. The value
of a boolean field corresponding to <attribute1, value1>

709

would be “1” if attribute1 had value1 in the original
record, and “0” otherwise. If the domain of values for a
quantitative approach is large, an obvious approach will
be to first partition the values into intervals and then map
each <attribute, interval> pair to a boolean attribute.

There are two problems with this simple approach
when applied to quantitative attributes [17]:

1. If the number of intervals for a quantitative attribute

(or values, if the attribute is not partitioned) is large, the
support for any single interval can be low. Without using
larger intervals, some rules involving this attribute may
not be found because they lack minimum support.

2. There is some information lost when partitioning

values into intervals. Some rules may have minimum
confidence only when an item in the antecedent consists
of a single value (or a small interval). This information
loss increases as the interval sizes become larger.

To solve these problems, we considered all possible

continuous ranges over the values of the quantitative
attributes. When combining adjacent intervals the first
problem disappears. The second problem can be solved
by avoiding partitioning of the attributes that are expected
in the antecedent of the rule.

For this specific problem, rules will only be interesting
if they represent non-trivial correlations between the
coefficients c1 and c2 as antecedents and the number of
iterations and the difference between the produced and
the optimal solution as consequents.

To avoid the problem of information loss the attributes
c1 and c2 are not partitioned into intervals. Instead, they
are directly mapped to consecutive intervals, such that the
order of the intervals is preserved. Partitioning was done
over the attributes num_iterations and gap, where the
number of intervals was kept small.

Three common partition strategies are:

1. equi-width partitioning, where the interval size of

each partition is the same,
2. equi-depth partitioning, where each partition has

approximately the same number of tuples assigned
to it, and

3. homogeneity-base partitioning, where the partition
size is determined by the uniform distribution of
the tuples in each partition.

Best results were achieved when implementing the

equi-width strategy due to the type and structure of the
data.

Given a set of records D, the problem of mining
quantitative association rules is to find all quantitative
association rules that have support and confidence greater
than the user-specified minimum support (min_sup) and
the minimum confidence (min_conf) respectively.

We solved the problem of discovering quantitative
association rules in five steps:

1. Determining the number of partitions for each
quantitative attribute.

2. Partitioning the attributes num_iterations and
gap in the preferred number of intervals
respectively.

3. Mapping the values of the quantitative attributes
that are not partitioned to consecutive integers
such that the order of the values is preserved.

4. Employing the Apriori algorithm for finding all
sets of items whose support is greater then the
user-specified minimum support. These are the
frequent itemsets. These frequent itemset are
then used to generate association rules.

5. Determining the interesting rules from the set of
previously generated association rules.

To find the most adequate number of intervals for

attributes num_iterations and gap, all the possible
variations were considered. From the obtained results, it
was concluded that the number of partitions depends of
the type and the size of the problem. Precisely, the
number of partitions is inversely proportional to the size
of the problem. Because the computational time was
limited, the accent was given on improving the accuracy
of A-TS. Therefore, the number of partitions for the
attribute num_iterations was kept small. For the attribute
gap, the number of partitions was set to a value that
corresponded to the most interesting rules.

 After partitioning the attributes, the Apriori algorithm
was employed to find the frequent itemsets and generate
the association rules. The value of the parameter min_sup
was set to 0.01.

For determining the interesting strong rules from the
generated set of association rules, additional measure of
interestigness should be applied [19]. The most popular
objective measure of interestigness is lift. Lift is defined
as the ratio of the frequency of the consequent (B) in the
transactions that contain the antecedent (A) over the
frequency of the consequent in the data as a whole.

)(/)()(BSupportBAConfidenceBALift ⇒=⇒ (6)

Lift values greater than 1 indicate that the consequent

is more frequent in transactions containing the antecedent
than in transactions that do not. It indicates the influence
of the antecedent over the frequency of the consequent.

Using this measures, we define an interesting rule as a
rule that satisfies the user-specified minimum confidence
threshold and has lift greater then one. The minimum
confidence threshold in this process was set to 0.5.
This process was performed for a subset of QAP problem
instances of sizes between n=20 and n=35. For each of
them, the interesting rules were extracted and the most
promising values for the coefficients c1 and c2 were set.
To compare the results obtained before and after the
coefficients tuning one hundred trials were performed for
each problem. Trials were performed only for short runs.
The experiments evaluate the improvement of the quality
of produced solutions under strong time constraints.

710

Table I provides a comparison of the quality of
solutions before and after tuning. The last column
represents the improvement as a difference between the
solution quality before and after tuning. Before
coefficients tuning, trials were performed for c1=10 and
c2=100-1. For half of the problem instances the
improvement is zero because the optimal coefficients
values were the same before and after. For the other half
of the cases, the average value of the improvement is
12.954 percent. It was concluded that the value of
coefficient c1 has greater influence on the quality of the
solution. This is due to the fact that, k1 which contains c1
introduces the long-term memory in the evaluation
function of A-TS. The column that represents the
difference in iterations shows that in almost all of the
cases the improvement is achieved when the number of
iterations is increased. This means that, the quality of the
algorithm is a compromise between the speed and the
accuracy. When coefficient tuning was applied to
improve the speed of the algorithm, the number of
iterations was decreased, but this induced lower accuracy
of the algorithm.

TABLE I.
QUALITY OF A-TS FOR REGULAR AND IRREGULAR QAP PROBLEMS

MEASURED IN PERCENT ABOVE THE BEST SOLUTION VALUE KNOWN.

Proble
m name

Best
known
value

Before
tuning

After
tuning

Differenc
e in

iteration
s

Improve
ment In percent

Tai20b 122455319 13.983 13.886 285 0.097 0.69
Tai25b 344355646 3.909 2.589 -1629 1.320 33.768
Tai30b 637117113 4.119 3.707 -468 0.412 10.002
Tai35b 283315445 2.635 2.635 0 0 0
Kra30a 88900 0.583 0.495 -665 0.088 15.094
Kra30b 91420 0.002 0.002 0 0 0
Chr25a 3796 1.452 1.452 0 0 0
Nug20 2570 0 0 0 0 0
Nug30 6124 0.020 0.020 0 0 0
Tai20a 703482 0.250 0.250 0 0 0
Tai25a 1167256 0.814 0.814 0 0 0
Tai30a 1818146 0.371 0.327 -523 0.044 11.860
Tai35a 2422002 0.618 0.579 -2288 0.039 6.311

VII. EXPERIMENTAL RESULTS
Tuned A-TS is compared with a set of the best heuristic

methods available for the QAP, such as the genetic hybrid
method of Fleurent and Ferland [4] (GH), the reactive
tabu search of Battiti and Tecchiolli [2] (RE-TS), the tabu
search of Taillard [5] (RO-TS) and a simulated annealing
from Connolly [3] (SA). In the comparison, a large subset
of well-known problem instances is considered, with sizes
between n = 12 and n = 35, contained in the QAPLIB.

The complexity of one iteration, for the compared
algorithms, varies: SA has the lower complexity with O(n)
per iteration. RO-TS and RE-TS have a complexity of
O(n2) per iteration, GH has a complexity of O(n3), while
A-TS has a complexity of O(n2/2) per iteration.

To make fair comparisons between these algorithms,
the same computational time was given to each test
problem trial, by performing a number of iterations equal
to 20nImax for A-TS, to 10nImax [18] for RE-TS and RO-
TS, 125n2Imax [18] for SA and 2.5Imax [18] for GH.

Tests are performed with Imax=10 and Imax=100. The
reason to compare algorithms on short and on long runs is
to evaluate their ability in producing relatively good
solutions under strong time constraints versus producing
very good solutions when more computational resources
are available.

Table II compares A-TS with the above-mentioned
methods on real life, irregular and structured problems. In
particular, the average quality of the solutions produced
by these methods is shown, measured in percent above the
best solution value known. The RE-TS, S-TS, and RO-TS
data contained in table I, II, III, IV and V was gathered
from L. M. Gambardella, É. D. Taillard and M. Dorigo
[15]. The results of the mentioned authors are averaged
over 10 runs, while the results of A-TS are averaged over
100 runs. The experiments evaluate their ability in
producing relatively good solutions under strong time
constraints.

Table II shows that, methods like RE-TS or SA are not
well adapted for irregular problems. Sometimes, they
produce solutions over 10% worse than the best solutions
known. For problem types Tai..b, GH seems to be the best
method overall. For problem instances that originate from
real life applications (Kra30a and Kra30b) A-TS performs
best. Our approach produces solutions with average
deviation smaller than 3% in most of the cases.

TABLE II.
QUALITY OF VARIOUS HEURISTIC METHODS FOR IRREGULAR PROBLEMS
AND SHORT RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION

VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE

Problem
name

Best
known
value

RO-TS RE-TS SA GH A-TS

Tai20b 122455319 6.700 — 14.392 0.150 13.886
Tai25b 344355646 11.486 — 8.831 0.874 2.589
Tai30b 637117113 13.284 — 13.515 0.952 3.707
Tai35b 283315445 10.165 — 6.935 1.084 2.635
Kra30a 88900 2.666 2.155 1.813 1.576 0.495
Kra30b 91420 0.478 1.061 1.065 0.451 0.002
Chr25a 3796 15.969 16.844 27.139 15.158 1.452

Table III provides the same type of comparisons as

those of table II, only for regular, unstructured problems.
Table III shows that for all of the listed problems, our
technique outperforms the other methods. For all of the
problem instances the average gap (deviation from the
optimal) of the produced solutions is bellow 1%.

TABLE III.
QUALITY OF VARIOUS HEURISTIC METHODS FOR REGULAR PROBLEMS
AND SHORT RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION

VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE.

Problem
name

Best
known
value

RO-TS RE-TS SA GH A-TS

Nug20 2570 0.101 0.911 0.327 0.047 0
Nug30 6124 0.271 0.872 0.500 0.249 0.020
Tai20a 703482 0.769 0.705 1.209 0.732 0.250
Tai25a 1167256 1.128 0.892 1.766 1.371 0.814
Tai30a 1818146 0.871 1.044 1.434 1.160 0.327
Tai35a 2422002 1.356 1.192 1.886 1.455 0.579

711

In Table IV and V results obtained with A-TS on longer
runs, setting Imax=100 are shown.

Comparison for irregular problems and long runs is
provided in Table IV. Similarly as in Table II, GH
performs best for problem types Tai..b. For the other
problem instances on long runs our method produces best
solutions.

TABLE IV.
QUALITY OF VARIOUS HEURISTIC METHODS FOR IRREGULAR PROBLEMS

AND LONG RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION
VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE

Problem
name

Best
known
value

RO-TS RE-TS SA GH A-TS

Tai20b 122455319 0 — 6.7298 0 3.267
Tai25b 344355646 0.0072 — 1.1215 0 0.168
Tai30b 637117113 0.0547 — 4.4075 0.0003 1.885
Tai35b 283315445 0.1777 — 3.1746 0.1067 2.300
Kra30a 88900 0.4702 2.0079 1.4657 0.1338 0.027
Kra30b 91420 0.0591 0.7121 0.1947 0.0536 0
Chr25a 3796 6.9652 9.8894 12.497 2.6923 0

Table V presents the results obtained for long runs on

regular problems showing the apparent dominance of
A-TS over the other four techniques presented. In half of
the cases, our results achieve the exact best solutions in
nearly all 100 trials, whereas in the rest, the average gap is
below 0.1%.

TABLE V.
QUALITY OF VARIOUS HEURISTIC METHODS FOR REGULAR PROBLEMS
AND LONG RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION

VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE.

Problem
name

Best
known
value

RO-TS RE-TS SA GH A-TS

Nug20 2570 0 0.911 0.070 0 0
Nug30 6124 0.032 0.872 0.121 0.007 0
Tai20a 703482 0.211 0.246 0.716 0.268 0.003
Tai25a 1167256 0.510 0.345 1.002 1.189 0.312
Tai30a 1818146 0.340 0.286 0.907 0.439 0.0005
Tai35a 2422002 0.757 0.355 1.345 0.698 0.0664

The above presented results show that for problem

types Tai..b GH performs best and RO-TS performs
slightly worst. On the contrary SA is not well adapted for
this kind of problems and RE-TS is the worst method
overall. For Tai..b problems A-TS shows slightly lower
performance than for the other problem types.

Under strong time constraints and for irregular
problem instances A-TS and GH seem to be the best
methods overall. It is important to mention that, for
problem instances that originate from real life
applications A-TS produces best quality solutions.

For regular, unstructured problems A-TS outperforms
all of the other methods for all of the problem instances
considered.

The solutions produced by A-TS for regular,
unstructured problems have a slightly better quality than
for irregular, structured problems. This can be explained
by the fact that relatively good solutions of the
unstructured problems are spread in the whole feasible
solution set [6]. If all the good solutions are concentrated

in a close subset of the feasible solutions, the performance
of A-TS slightly decreases. When large number of
relatively good solutions are spread all over the solutions
space, our method effectively explores the solution space
and always finds the optimal solutions. This indicates that
A-TS implements good diversification strategy.

Additional comparison of the algorithms, based on the
number of iterations needed to achieve the optimal
solution, was performed. A series of runs performed with
the A-TS were compared with published results of the
metaheuristic search techniques RE-TS and RO-TS.

Table VI shows comparisons over some of the
problems from the Taillard set, ranging in sizes from 12
to 35. Hundred runs were performed on each problem by
A-TS, opposed to 30 runs performed by the authors of the
other approaches. The RE-TS and RO-TS data contained
in this table was gathered from Battiti and Tecchiolli [2].
The best result in each row is bolded.

TABLE VI.
COMPARISON OF AVERAGE ITERATIONS BEFORE CONVERGENCE TO BEST

SOLUTION FOR RE-TS, RO-TS, AND A-TS.

Average iterations to best solution Problem
name

Best known
value RE-TS RO-TS A-TS

Tai12a 224416 282.3 210.7 165.7
Tai15a 388214 1780.3 2168.0 2145.5
Tai17a 491812 4133.9 5020.4 4094.25
Tai20a 703482 37593.2 34279 31650.8
Tai25a 1167256 38989.7 80280.4 16619.08
Tai30a 1818146 68178.2 146315.7 81038.33
Tai35a 2422002 281334.0 448514.5 240595.1

The experimental results presented in Table VI show

that our algorithm performs concurrently against other
techniques. In nearly all of the cases, A-TS converges in
less number of iterations than the other variations of Tabu
Search.

VIII. CONCLUSION
This paper describes a novel approach to the Tabu

search scheme. We propose a new decision making
mechanism using a new evaluation function integrated
within the standard TS. The resulting Adaptive Tabu
Search (A-TS) augments the exploration and exploitation
of the search space, through the incorporation of long-
term memory, aspiration criteria and the value of the
move in a single evaluation function. Using search
history, the adaptive coefficients within the combined
evaluation function provide useful feedback to the
process. Also, a new approach in coefficients tuning was
presented. We propose implementation of a data mining
technique for discovering interesting correlations between
the coefficients being tuned and the quality of the
produced solutions.

Instances of the Quadratic Assignment problem were
used for coefficients tuning and quantitative evaluation of
the algorithm. The experimental results showed that A-TS
performs favorably. In some cases, the optimal result was
found in fewer number of iterations than other techniques.
For most of the problems, especially for regular problem

712

instances and real life problem instances, A-TS seems to
be the best choice.

Although the aim of using a data mining technique was
to improve this particular tabu search algorithm, the
implications are quite general. The same ideas can easily
be adapted and applied to other tabu search algorithms as
well. The utilization of an established data mining
technique for coefficients tuning significantly improves
the hand-tuned algorithm.

Based on the encouraging results, further research of A-
TS will be performed. Its implementation to more
complex, real life problems, will provide more details of
the algorithm quality and advantages.

REFERENCES
[1] R. E. Burkard, S. E. Karisch and F. Rendl, “QAPLIB—A

Quadratic Assignment Problem Library,” Journal of Global
Optimization, 10, 391–403, 1997.

[2] R. Battiti, and G. Tecchiolli, “The Reactive Tabu Search,” ORSA
Journal on Computing, 6, 2, 126-140, 1994.

[3] D. T. Connolly, “An Improved Annealing Scheme for the QAP,”
Eur. J. Op. Res., 46: 93–100, 1990.

[4] C. Fleurent and J. Ferland, “Genetic Hybrids for the Quadratic
Assignment Problem,” DIMACS Series in Mathematics and
Theoretical Computer Science, 16: 190– 206, 1994.

[5] E. D. Taillard, “Robust Tabu Search for the Quadratic Assignment
Problem,” Parallel Computing, 17:443-455, 1991.

[6] S. Sahni and T. Gonzalez, “P-complete Approximation Problems,”
J. ACM, 23, 555-565, 1976.

[7] T. C. Koopmans and M. J. Beckmann, “Assignment Problems and
the Location of Economics Activities,” Econometrica, 25: 53–76,
1957.

[8] E. Taillard, “Comparison of Iterative Searches for the Quadratic
Assignment Problem,” Location Science, 3:87-103, 1995.

[9] K. M. Anstreicher, “Recent Advances in the Solution of Quadratic
Assignment Problems,” Mathematical Programming, Series B
97:27-42, 2003.

[10] F. Glover, “Future Paths for Integer Programming and Link to
Artificial Intelligence,” Computers and Operations Research,
12:533-549, 1986.

[11] F. Glover, “Tabu Search – Part I,” ORSA Journal on Computing,
1(3): 109-206, 1989.

[12] F. Glover, “Tabu Search – Part II,” ORSA Journal on Computing,
2:4-32, 1990.

[13] F. Glover and M. Laguna, “Tabu Search,” Kluwer Academic
Publishers, 1997.

[14] F. Glover and M. Laguna, “Modern Heuristic Techniques for
Combinatorial Problems,” Colin Reeves, ed. Blackwell Scientific
Publishing, 71-140, 1993.

[15] T. G. Crainic, M. Gendreau and J. Potvin, “Parallel Tabu Search,”
2005, Montreal, Canada.

[16] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int. Conf. Very Large Data Bases,
1994.

[17] R. Srikant and R. Agrawal, “Mining Quantitative Association
Rules in Large Relational Tables,” SIGMOD - 1996.

[18] L. M. Gambardella, É. D. Taillard and M. Dorigo, “Ant colonies
for the quadratic assignment problem,” IDSIA - 1997.

[19] G. I. Webb, “Discovering Significant Rules,” KDD, August 20-23,
2006, Philadelphia, Pennsylvania, USA.

713

	Main Menu
	ToC
	Sessions Schedule
	Author Index
	Go Back
	Search

