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Abstract— This paper describes the Adaptive Tabu Search 
algorithm (A-TS), an improved tabu search algorithm for 
combinatorial optimization. A-TS uses a novel approach for 
evaluation of the moves, incorporated in a new complex 
evaluation function. A new decision making mechanism 
triggers the evaluation function providing means for 
avoiding possible infinite loops. The new evaluation function 
implements effective diversification strategy that prevents 
the search from stagnation. It also incorporates two 
adaptive coefficients that control the influence of the 
aspiration criteria and the long-term memory, respectively. 
The adaptive nature of A-TS is based on these two adaptive 
coefficients. This article also presents a new data mining 
approach towards improving the performance of A-TS by 
tuning these coefficients. A-TS performance is applied to the 
Quadratic Assignment Problem. Published results from 
other authors are used for comparison. The experimental 
results show that A-TS performs favorably against other 
established techniques.  

Keywords—data mining, heuristic, coefficients tuning, tabu 
search, quadratic assignment problem. 

I. INTRODUCTION 
Heuristic search algorithms have proven to be very 

useful in solving difficult combinatorial optimization 
problems. Due to their ability to escape local optima, most 
successful heuristic local search techniques are Simulated 
Annealing, Genetic Algorithms, and Tabu Search with its 
variations. Tabu Search has been very successful in 
achieving near-optimal (and sometimes optimal) solutions 
to a variety of hard problems.  

This paper introduces the Adaptive Tabu Search (A-
TS), an improved tabu search algorithm for combinatorial 
optimization. Adaptive Tabu Search introduces a new 
evaluation function to the basic scheme of Tabu Search. 
Our Tabu scheme also proposes a new mechanism for 
selecting the best move. The selection process uses the 
evaluation function, which incorporates both long-term 
memory and aspiration criteria. The evaluation function 
used in this process involves several parameters and 
coefficients. Choosing appropriate values for these 
parameters has great impact on A-TS performance. To 
achieve better performance, coefficient tuning was 
performed applying data mining techniques. 

The performance of our A-TS is evaluated by using 
instances of the Quadratic Assignment Problem (QAP), 
chosen from the QAP Library (QAPLIB) [1]. By solving 
the same problem instances of QAP used by other cited 
researchers [2][3][4][5], we aimed to derive objective 
conclusions of the advantages of our Adaptive Tabu 

Search and of the use of data mining techniques for 
optimizing the performance of meta-heuristic algorithms.  

Section II presents a formal definition of the QAP. 
Section III provides a brief overview of the basic Tabu 
Search algorithm and its popular variations. In section IV, 
we describe the main improvements that we propose to 
the basic TS algorithm, resulting in our Adaptive Tabu 
Search (A-TS) algorithm. The environment used to test A-
TS is described in section V. The implementation issues 
of a data mining technique for coefficients tuning are 
addressed in section VI. Section VII presents the 
experimental results. Our conclusions and areas of further 
research are given in section VIII.  

II. THE QUADRATIC ASSIGNMENT PROBLEM 
The Quadratic Assignment Problem (QAP) is NP-hard 

combinatorial optimization problem [6]. Its many practical 
instances come from areas such as design and resource 
allocation, microprocessor design and scheduling. Due to 
the complexity of QAP, in some ways, QAP has become a 
benchmark by which new techniques are validated.  

For the first time, Koopmans and Beckman stated QAP 
in 1957 [7]. It can be described as follows: Given two n×n 
matrices A=(aij) and B=(bij), find a permutation π* 
minimizing 
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where П(n) is the set of permutations of n elements.  
 
In other words, it deals with identifying optimal 

assignments of facilities to locations such that the cost of 
the resulting system is minimized. Shani and Gonzalez [6] 
have shown that the problem is NP-hard and that there is 
no ε-approximation algorithm for the QAP unless P = NP. 

While some NP-hard combinatorial optimization 
problems can be solved exactly for relatively large 
instances, QAP instances of size larger than 20 are 
considered intractable. In practice, a large number of real 
world problems lead to QAP instances of considerable 
size that cannot be solved exactly. For example, an 
application in image processing requires solving more 
than 100 QAP problems of size n = 256 [8]. Even with 
today’s fastest computers, relatively small problems 
require prohibitive amounts of time to solve to provable 
optimality [9]. The use of heuristic methods for solving 
large QAP instances is currently the only practicable 
solution.  
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III. TABU SEARCH OVERVIEW 
Glover introduced Tabu Search (TS) in the late 80’s 

[10][11][12]. The basic idea behind TS is that, adding 
short-term memory to local search, improves its ability to 
locate optimal solutions. Revisiting previously or recently 
visited solutions is discouraged, and operations that would 
do so are labeled as being “tabu” or “taboo”. Glover 
proposed the use of both statically and dynamically sized 
memory structures for tracking tabu operations. In 1991 
Taillard created the Robust Tabu Search (RO-TS) [5], 
which introduced a dynamic randomly sized short-term 
memory design. Battiti and Tecchiolli developed the RE-
TS [2] in 1994. They introduced a dynamically sized 
short-term memory, dependent on the runtime 
characteristics of the algorithm. In addition, they utilized a 
form of long-term memory that helped prevent searches 
from stagnating. 

Many other TS variations have been developed that 
incorporate various forms of dynamically sized short-term 
memory and long-term memory [13][14]. Still, the RO-TS 
and RE-TS remain among the most successful and 
popular. The following concepts are common to most (if 
not all) Tabu Search techniques, but their specific 
implementations are somewhat flexible.  

A move m is an operation by which one solution is 
transformed into a new, neighboring solution. The 
neighborhood of the solution, N(i,k), is the set of all 
solutions that can be derived from the given solution i, at 
iteration k, by applying a valid move. For the QAP, a 
common move strategy consists of swapping facilities 
assigned to two locations. 

The Tabu List implements the short-term memory. It is 
the most influential piece of any TS design. The basic 
purpose of the list is to maintain a record of moves that 
are tabu (discouraged) during a number of following 
iterations. Usually, a move added to the Tabu List is the 
reciprocal of the move last accepted and applied to the 
current solution. The reciprocal is recorded to prevent the 
search from “undoing” recent moves.  

The main weakness of TS is its tendency to explore a 
too limited region of the search space, i.e., the search 
lacks breadth, unless systematic and effective 
diversification schemes are used [15]. During a TS run, it 
is possible that a single solution will be visited multiple 
times. To some degree, this behavior is desirable - it 
supports the concepts of exploitation and exploration. On 
repeated visits of a solution, the Tabu List will most likely 
contain a different set of tabu moves, and the search may 
travel a new path. However, the problem arises when the 
algorithm continuously revisits the same set of solutions 
repeatedly (infinite loop), leaving large areas of the search 
space unexplored. By increasing the length of the list, the 
probability of entering an infinite loop decreases. On the 
other hand, longer lists limit the exploration of the search 
space. The so-called long-term memory has a great deal in 
solving this problem. 

When selecting the next move to perform, TS evaluates 
the neighborhood of the current solution and attempts to 
find the best non-tabu move; “best” being determined as 
the objective value of the resulting solution, should the 
move be applied. Sometimes, however, it may be 
desirable to allow a tabu move to be chosen. The 
conditions under which a tabu move would be allowed are 
known as the aspiration criteria. The most common 

aspiration a criterion is to test whether the implementation 
of the tabu move would result in the best-fit solution yet 
found, for the current run. Battiti and Tecchiolli used the 
above criterion in the RE-TS. Fig.1 shows the pseudo 
code of TS: 

 
TABUSEARCH() 

1 Create an initial solution i at random. Set i*=i and k=0. 
2 Set k=k+1 and generate a subset V* of solutions in N(i,k) such 

that either one of the tabu conditions tr(i,m)∈Tr is violated 
(r=1,...,t) or at least one of the aspiration conditions ar(i,m) 
∈Ar(i,m) holds (r=1,...,a). 

3 Choose a best j=i∈m in V* (with respect to objective function f) 
and set i=j. 

4 If f(i) < f(i*) then set i*=i. 
5 Update tabu and aspiration conditions. 
6 If a stopping condition is met then stop. Else, go to step 2. 

 
Fig. 1. The pseudo-code of Tabu Search algorithm. 

 

IV. THE ADAPTIVE TABU SEARCH 
The Adaptive Tabu Search, that we propose, explores 

the meaning of finding the “best” move. The search for 
the best move is a very computation demanding operation. 
Therefore, it plays a major part in the speed and accuracy 
of the solving process. The local search in TS consists of 
evaluating all moves applicable to the current solution, 
and choosing the best one. In the A-TS approach, the non-
tabu move that generates the greatest improvement of the 
objective function is chosen and applied. In this case, no 
aspiration criteria are being utilized. However, in some 
instances, none of the evaluated non-tabu moves provides 
any improvement. The proposed evaluation function is 
triggered only when all evaluated moves are tabu or non-
improving, non-tabu. The move for which the evaluation 
function returns the lowest value is accepted and 
performed. 

Any implementation of TS must provide a balance 
between exploring and exploiting the search space. The 
risk of visiting certain solutions infinite number of times 
must be avoided. On the other hand, the potential benefit 
from revisiting a single solution has to be encouraged. The 
aim of A-TS is to achieve this balance and maintain it 
throughout the whole search. 

The evaluation function makes its decisions considering 
the long-term memory and the remaining time for the 
move as tabu (tabu_time_left). The long-term memory is 
implemented as a list of counters, remembering the 
application of each possible move during the search. In 
the evaluation function, the number of occurrences of the 
move (frequency) is multiplied with an adaptive 
coefficient (k1). The value of k1 is proportional to the 
value of the move itself (move_value), the frequency of 
the application of the move and the current iteration. The 
main objective of this adaptive coefficient is to prevent the 
search from being caught in an infinite loop. This is done 
by discouraging moves that have been frequently applied. 
This implements successful diversification strategy, as it 
will be shown in section 7. 

On the other hand, the function includes an aspiration 
criterion. It allows a tabu move to be performed, if it 
seems promising and not risky in terms of loops or local 
stagnation. This criterion is implemented using another 
adaptive coefficient (k2), whose value also changes and is 
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proportional to the value of the move. This is because a 
tabu move with value much greater than the rest of the 
nonimproving, nontabu or tabu moves in a current 
iteration will be the best move according to the evaluation 
function even if it has been applied very recently. When 
applied the adaptive coefficient k2, a move will be 
discouraged according to the value of the move. 

The adaptive nature of our Tabu Search scheme is 
based on these two adaptive coefficients. Their values 
change with every iteration. The final form of the 
evaluation function is: 
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and iter is the current iteration. 

The coefficients k1 and k2 control the influence of the 
move frequency and the remaining time of the move in the 
tabu list. These coefficients drive the heuristic. Therefore,  
their influence upon the accuracy of the obtained solutions 
is significant. Since their values also depend on the values 
of coefficients c1 and c2, scientific method should be 
applied for fine-tuning these coefficients.  

V. BENCHMARK INSTANCES 
The problem instances used in the development and 

testing of A-TS are obtained from the QAPLIB, a public 
library of QAP problems and their best-known solutions 
[1]. The problems are organized into sets, with each set 
named after the author(s) who developed the group of 
problems. The number in the problem’s name corresponds 
to the size of the problem. QAPLIB currently contains 
over 100 instances that have been used in earlier 
researches. Some of them originate from real life 
applications, like hospital layout (kra30*, els19), 
typewriter design (bur26*), etc. Most of these problems 
come from practical applications or they are randomly 
generated with non-uniform laws that imitate the 
distributions observed on real world problems. 

As shown by Taillard [8], the quality of solutions 
produced by heuristic methods strongly depends on the 
problem type, that is, the structure of the data matrices A 
and B. For problems taken from the real world, many 
heuristic methods perform rather poorly. They are not able 
to find solutions within 10% of the value of the best 
solutions known, even if excessive computing time is 
allowed. Moreover, the poor performance occurs even for 
small size problems. Conversely, the same methods may 
perform very well on randomly generated problems. For 

such problems, almost all heuristic methods are able to 
find high quality solutions (i.e., solutions approximately 
one percent worse than the best solution known). 
Therefore, it is reasonable to analyze the performance of 
A-TS by splitting the problem instances into two 
categories: (i) real world, irregular and structured 
problems, and (ii) randomly generated, regular and 
unstructured problems.  

VI. COEFFICIENTS TUNNING 
The performance of tabu search algorithms depends of 

many search parameters such as tabu tenures, move 
selection probabilities, coefficients etc. Significant  
performance benefits can be achieved by determining 
appropriate values for these search parameters. In this 
paper, we present an implementation of a data mining 
method for optimizing the coefficients c1 and c2 
incorporated in the evaluation function, to improve the 
performance of A-TS. 

When improving the performance of a certain 
algorithm the goal is to increase the accuracy and 
minimize the time needed for producing satisfactory 
solutions. The coefficients c1 and c2 are part of the 
evaluation function that plays a major role in the speed 
and accuracy of the search. Determining the relationships 
between the coefficients c1 and c2 and the number of 
iterations needed for producing optimal or near optimal 
solutions, would provide valuable information for 
improving the performance of the algorithm. This kind of 
relationships or associations can be discovered by the use 
of data mining algorithms for mining association rules in 
large data sets. The process is known as association rule 
mining. 

The process of inducing association rules consists of 
two steps: 

 
Step1: Finding all frequent itemsets. 
Step2: Generating strong association rules from the 

frequent itemsets. 
 
Among the best algorithms for mining Boolean 

association rules in large sets of data is the Apriori 
algorithm [16]. The algorithm uses prior knowledge of 
frequent itemset properties to prune (reduce) the search 
space. The name of the algorithm is based on this 
property. 

An item is a triple that represents either a categorical 
attribute with its value, or a quantitative attribute with its 
range. The value of a quantitative attribute can be 
represented as a range where the upper and lower limits 
are the same. We use the term itemset to represent a set of 
items. A k-itemset is an itemset that contains k items. An 
itemset is frequent if it satisfies minimum support 
(min_sup) threshold, which can be set by user or domain 
expert. Let I = {i1, i2, …, im} be a set of items. Let D, the 
task relevant data, be a set of transactions where each 
transaction T is a set of items such that T⊆I. An itemset 
satisfies minimum support if the occurrence frequency of 
the itemset is greater than or equal to the product of 
min_sup and the total number of transactions in D.  
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The Apriori algorithm uses an important property 
called the Apriori property that states: All non-empty 
subsets of a frequent itemset must also be frequent. The 
property is based on the following observation. By 
definition, if an itemset I does not satisfy the minimum 
support threshold, min_sup, then I is not frequent, If an 
item A is added to the itemset I, then the resulting itemset 
{i.e., I ∪ A} cannot occur more frequently than I. 
Therefore, I ∪ A is not frequent either. This property is 
used to improve the efficiency of the level-wise 
generation of frequent itemsets. A level-wise generation 
is an iterative search, where k-itemsets are used to 
explore (k+1)-itemsets. First, the set of frequent 1-
itemsets is found. This set is denoted L1. L1 is used to find 
L2, the frequent 2-itemsets, which is used to find L3, and 
so on, until no more frequent k-itemsets can be found.  

The generation of frequent itemsets is a two-step 
process, consisting of join and prune actions. 

In the join step, to find a frequent set of k items Lk, a 
set of candidate k-itemsets is generated by joining Lk-1 
with itself. This set of candidates is denoted Ck. The join 
is performed where members of Lk-1 are joinable, that is, 
if they have (k-2) items in common. 

In the prune step, the Apriori property is employed to 
remove candidates that have a subset that is not frequent. 
The candidate set Ck is a superset of Lk. Its members may 
or may not be frequent, but all of the frequent k-itemsets 
are included in Ck. A scan of the database to determine 
the count of each candidate in Ck would result in the 
determination of Lk (i.e., all candidates having a count no 
less than the minimum support count are frequent by 
definition, and therefore belong to Lk). Ck, however, can 
be huge, and so this could involve heavy computation. To 
reduce the size of Ck, the Apriori property is used as 
follows. Any (k-1)-itemset that is not frequent cannot be a 
subset of a frequent k-itemset. Hence, if any (k-1)-subset 
of a candidate k-itemset is not in Lk-1, then the candidate 
cannot be frequent either and so it can be removed from 
Ck.  

The pseudo-code for the Apriori algorithm is given on 
Fig. 2. 

Once the frequent itemsets from the transactions in D 
have been found, it is straightforward to generate strong 
association rules from them. To define a strong 
association rule, additional definitions must be 
introduced. 

Let A be a set of items. A transaction T is said to 
contain A if and only if A ⊆ T. An association rule is an 
implication of the form A ⇒ B, where A ⊂ I, B ⊂ I and A 
∩ B = ∅. The rule A ⇒ B holds in the transaction set D 
with support s, where s is the percentage of transactions 
in D that contain A ∪ B. The rule A ⇒ B has confidence c 
in the transaction set D if c is the percentage of 
transactions in D containing A which also contain B. That 
is, 

 
}{)( BAprobBASupport ∪=⇒   (4) 

 
}|{)( ABprobBAConfidence =⇒   (5) 

 
Rules that satisfy both a minimum support threshold 

(min_sup) and a minimum confidence threshold 
(min_conf) are called strong. 

In this specific problem, the transaction set D was 
generated by performing 10000 runs of the algorithm 
A-TS. Ten different values for coefficients c1 and c2 were 
used and one hundred different initial solutions as a 
starting point for the search. The values for coefficient c1 
vary in the interval [10, 100]. This is an arithmetic 
progression where the first term is 10 and the common 
difference is 10. The values for coefficient c2 are in the 
interval [1000-1, 100-1]. Here the base changes with 
arithmetic progression where the first term is 1000 and 
the common difference is -100. One hundred different 
seed values for generating the initial solution were used. 
The table obtained consists of five quantitative attributes 
(the number of iterations named num_iterations, the 
difference between the produced and the optimal solution 
named gap, seed, c1 and c2). 

As it was previously stated, the Apriori algorithm is an 
influential algorithm for mining frequent itemsets for 
Boolean association rules. A boolean association rule 
concerns associations between the presence or absence of 
items. A quantitative association rule describes 
associations between quantitative items or attributes. 
Since our data set consists of quantitative attributes, we 
refer to this mining problem as Quantitative association 
rules problem.  

 
 
APRIORI(D: database of transactions, min_sup: minimum support) 

1 L1 is the set of frequent 1-itemsets; 
2 k = 2;  
3 while Lk-1 is not empty do{ 
4 Ck is the candidate set, generated by joining Lk-1 with itself; 
5  for each transaction t ∈ D { // scan D for counts 
6  Ct = subset(Ck , t); // get the subsets of t that are candidates 
7  for each candidate c in Ct test whether it is frequent 
8  c.count++; // scan D in order to determine the 

//count of candidate c 
9  } 
10  Lk = {c ∈ Ck | c.count ≥ min_sup} // Lk is the collection of 

//frequent sets c from Ck  that are having count no less than 
//min_sup 

11 k++; 
12 } 
13 return L = ∪kLk; 
 

Fig. 2. The Apriori algorithm for discovering frequent itemsets for 
mining Boolean association rules. 

 
The Boolean association rules problem can be 

considered as a special case of Quantitative association 
rules problem. Therefore, mapping the Quantitative 
association rules problem into the Boolean association 
rules problem will allow us to use any algorithm for 
finding Boolean association rules in order to find 
Quantitative association rules. If the quantitative 
attributes in the table have only few values, this mapping 
is straightforward. Conceptually, instead of having just 
one field in the table for each attribute, there can be as 
many fields as the number of attribute values. The value 
of a boolean field corresponding to <attribute1, value1> 
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would be “1” if attribute1 had value1 in the original 
record, and “0” otherwise. If the domain of values for a 
quantitative approach is large, an obvious approach will 
be to first partition the values into intervals and then map 
each <attribute, interval> pair to a boolean attribute. 

There are two problems with this simple approach 
when applied to quantitative attributes [17]: 

 
1. If the number of intervals for a quantitative attribute 

(or values, if the attribute is not partitioned) is large, the 
support for any single interval can be low. Without using 
larger intervals, some rules involving this attribute may 
not be found because they lack minimum support. 

 
2. There is some information lost when partitioning 

values into intervals. Some rules may have minimum 
confidence only when an item in the antecedent consists 
of a single value (or a small interval). This information 
loss increases as the interval sizes become larger. 

 
To solve these problems, we considered all possible 

continuous ranges over the values of the quantitative 
attributes. When combining adjacent intervals the first 
problem disappears. The second problem can be solved 
by avoiding partitioning of the attributes that are expected 
in the antecedent of the rule. 

For this specific problem, rules will only be interesting 
if they represent non-trivial correlations between the 
coefficients c1 and c2 as antecedents and the number of 
iterations and the difference between the produced and 
the optimal solution as consequents.  

To avoid the problem of information loss the attributes 
c1 and c2 are not partitioned into intervals. Instead, they 
are directly mapped to consecutive intervals, such that the 
order of the intervals is preserved. Partitioning was done 
over the attributes num_iterations and gap, where the 
number of intervals was kept small.  

Three common partition strategies are:  
 
1. equi-width partitioning, where the interval size of 

each partition is the same, 
2. equi-depth partitioning, where each partition has 

approximately the same number of tuples assigned 
to it, and 

3. homogeneity-base partitioning, where the partition 
size is determined by the uniform distribution of 
the tuples in each partition. 

 
Best results were achieved when implementing the 

equi-width strategy due to the type and structure of the 
data. 

Given a set of records D, the problem of mining 
quantitative association rules is to find all quantitative 
association rules that have support and confidence greater 
than the user-specified minimum support (min_sup) and 
the minimum confidence (min_conf) respectively.  

We solved the problem of discovering quantitative 
association rules in five steps: 

 

1. Determining the number of partitions for each 
quantitative attribute. 

2. Partitioning the attributes num_iterations and 
gap in the preferred number of intervals 
respectively. 

3. Mapping the values of the quantitative attributes 
that are not partitioned to consecutive integers 
such that the order of the values is preserved. 

4. Employing the Apriori algorithm for finding all 
sets of items whose support is greater then the 
user-specified minimum support. These are the 
frequent itemsets. These frequent itemset are 
then used to generate association rules. 

5. Determining the interesting rules from the set of 
previously generated association rules. 

 
To find the most adequate number of intervals for 

attributes num_iterations and gap, all the possible 
variations were considered. From the obtained results, it 
was concluded that the number of partitions depends of 
the type and the size of the problem. Precisely,  the 
number of partitions is inversely proportional to the size 
of the problem. Because the computational time was 
limited, the accent was given on improving the accuracy 
of A-TS. Therefore, the number of partitions for the 
attribute num_iterations was kept small. For the attribute 
gap, the number of partitions was set to a value that 
corresponded to the most interesting rules. 

 After partitioning the attributes, the Apriori algorithm 
was employed to find the frequent itemsets and generate 
the association rules. The value of the parameter min_sup 
was set to 0.01.  

For determining the interesting strong rules from the 
generated set of association rules, additional measure of 
interestigness should be applied [19]. The most popular 
objective measure of interestigness is lift. Lift is defined 
as the ratio of the frequency of the consequent (B) in the 
transactions that contain the antecedent (A) over the 
frequency of the consequent in the data as a whole. 

 
)(/)()( BSupportBAConfidenceBALift ⇒=⇒    (6) 

 
Lift values greater than 1 indicate that the consequent 

is more frequent in transactions containing the antecedent 
than in transactions that do not. It indicates the influence 
of the antecedent over the frequency of the consequent. 

Using this measures, we define an interesting rule as a 
rule that satisfies the user-specified minimum confidence 
threshold and has lift greater then one. The minimum 
confidence threshold in this process was set to 0.5. 
This process was performed for a subset of QAP problem 
instances of sizes between n=20 and n=35. For each of 
them, the interesting rules were extracted and the most 
promising values for the coefficients c1 and c2 were set. 
To compare the results obtained before and after the 
coefficients tuning one hundred trials were performed for 
each problem. Trials were performed only for short runs. 
The experiments evaluate the improvement of the quality 
of produced solutions under strong time constraints. 
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Table I provides a comparison of the quality of 
solutions before and after tuning. The last column 
represents the improvement as a difference between the 
solution quality before and after tuning. Before 
coefficients tuning, trials were performed for c1=10 and 
c2=100-1. For half of the problem instances the 
improvement is zero because the optimal coefficients 
values were the same before and after. For the other half 
of the cases, the average value of the improvement is 
12.954 percent. It was concluded that the value of 
coefficient c1 has greater influence on the quality of the 
solution. This is due to the fact that, k1 which contains c1 
introduces the long-term memory in the evaluation 
function of A-TS. The column that represents the 
difference in iterations shows that in almost all of the 
cases the improvement is achieved when the number of 
iterations is increased. This means that, the quality of the 
algorithm is a compromise between the speed and the 
accuracy. When coefficient tuning was applied to 
improve the speed of the algorithm, the number of 
iterations was decreased, but this induced lower accuracy 
of the algorithm. 

TABLE I.  
QUALITY OF A-TS FOR REGULAR AND IRREGULAR QAP PROBLEMS 

MEASURED IN PERCENT ABOVE THE BEST SOLUTION VALUE KNOWN.  

Proble
m name 

Best 
known 
value 

Before 
tuning 

After 
tuning

Differenc
e in 

iteration
s 

Improve
ment In percent

Tai20b 122455319 13.983 13.886 285 0.097 0.69 
Tai25b 344355646 3.909 2.589 -1629 1.320 33.768 
Tai30b 637117113 4.119 3.707 -468 0.412 10.002 
Tai35b 283315445 2.635 2.635 0 0 0 
Kra30a 88900  0.583 0.495 -665 0.088 15.094 
Kra30b 91420  0.002 0.002 0 0 0 
Chr25a 3796  1.452 1.452 0 0 0 
Nug20 2570 0 0 0 0 0 
Nug30 6124 0.020 0.020 0 0 0 
Tai20a 703482 0.250 0.250 0 0 0 
Tai25a 1167256 0.814 0.814 0 0 0 
Tai30a 1818146 0.371 0.327 -523 0.044 11.860 
Tai35a 2422002 0.618 0.579 -2288 0.039 6.311 

 

VII. EXPERIMENTAL RESULTS 
Tuned A-TS is compared with a set of the best heuristic 

methods available for the QAP, such as the genetic hybrid 
method of Fleurent and Ferland [4] (GH), the reactive 
tabu search of Battiti and Tecchiolli [2] (RE-TS), the tabu 
search of Taillard [5] (RO-TS) and a simulated annealing 
from Connolly [3] (SA). In the comparison, a large subset 
of well-known problem instances is considered, with sizes 
between n = 12 and n = 35, contained in the QAPLIB. 

The complexity of one iteration, for the compared 
algorithms, varies: SA has the lower complexity with O(n) 
per iteration. RO-TS and RE-TS have a complexity of 
O(n2) per iteration, GH has a complexity of O(n3), while 
A-TS has a complexity of O(n2/2) per iteration.  

To make fair comparisons between these algorithms, 
the same computational time was given to each test 
problem trial, by performing a number of iterations equal 
to 20nImax for A-TS, to 10nImax [18] for RE-TS and RO-
TS, 125n2Imax [18] for SA and 2.5Imax [18] for GH.  

Tests are performed with Imax=10 and Imax=100. The 
reason to compare algorithms on short and on long runs is 
to evaluate their ability in producing relatively good 
solutions under strong time constraints versus producing 
very good solutions when more computational resources 
are available. 

Table II compares A-TS with the above-mentioned 
methods on real life, irregular and structured problems. In 
particular, the average quality of the solutions produced 
by these methods is shown, measured in percent above the 
best solution value known. The RE-TS, S-TS, and RO-TS 
data contained in table I, II, III, IV and V was gathered 
from L. M. Gambardella, É. D. Taillard and M. Dorigo 
[15]. The results of the mentioned authors are averaged 
over 10 runs, while the results of A-TS are averaged over 
100 runs. The experiments evaluate their ability in 
producing relatively good solutions under strong time 
constraints. 

Table II shows that, methods like RE-TS or SA are not 
well adapted for irregular problems. Sometimes, they 
produce solutions over 10% worse than the best solutions 
known. For problem types Tai..b, GH seems to be the best 
method overall. For problem instances that originate from 
real life applications (Kra30a and Kra30b) A-TS performs 
best. Our approach produces solutions with average 
deviation smaller than 3% in most of the cases. 

TABLE II.  
QUALITY OF VARIOUS HEURISTIC METHODS FOR IRREGULAR PROBLEMS 
AND SHORT RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION 

VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE  

Problem 
name 

Best 
known 
value 

RO-TS RE-TS SA GH A-TS 

Tai20b 122455319 6.700 — 14.392 0.150 13.886 
Tai25b 344355646 11.486 — 8.831 0.874 2.589 
Tai30b 637117113 13.284 — 13.515 0.952 3.707 
Tai35b 283315445 10.165 — 6.935 1.084 2.635 
Kra30a 88900  2.666 2.155 1.813 1.576 0.495 
Kra30b 91420  0.478 1.061 1.065 0.451 0.002 
Chr25a 3796  15.969 16.844 27.139 15.158 1.452 

 
Table III provides the same type of comparisons as 

those of table II, only for regular, unstructured problems. 
Table III shows that for all of the listed problems, our 
technique outperforms the other methods. For all of the 
problem instances the average gap (deviation from the 
optimal) of the produced solutions is bellow 1%. 

TABLE III.  
QUALITY OF VARIOUS HEURISTIC METHODS FOR REGULAR PROBLEMS 
AND SHORT RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION 

VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE.  

Problem 
name 

Best 
known 
value 

RO-TS RE-TS SA GH A-TS 

Nug20 2570 0.101 0.911 0.327 0.047 0 
Nug30 6124 0.271 0.872 0.500 0.249 0.020 
Tai20a 703482 0.769 0.705 1.209 0.732 0.250 
Tai25a 1167256 1.128  0.892 1.766 1.371 0.814 
Tai30a 1818146 0.871  1.044 1.434 1.160 0.327 
Tai35a 2422002 1.356  1.192 1.886 1.455 0.579 
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In Table IV and V results obtained with A-TS on longer 
runs, setting Imax=100 are shown. 

Comparison for irregular problems and long runs is 
provided in Table IV. Similarly as in Table II, GH 
performs best for problem types Tai..b. For the other 
problem instances on long runs our method produces best 
solutions.  

TABLE IV.  
QUALITY OF VARIOUS HEURISTIC METHODS FOR IRREGULAR PROBLEMS 

AND LONG RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION 
VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE  

Problem 
name 

Best 
known 
value 

RO-TS RE-TS SA GH A-TS 

Tai20b 122455319 0 — 6.7298 0 3.267 
Tai25b 344355646 0.0072 — 1.1215 0 0.168 
Tai30b 637117113 0.0547 — 4.4075 0.0003 1.885 
Tai35b 283315445 0.1777 — 3.1746 0.1067 2.300 
Kra30a 88900  0.4702 2.0079 1.4657 0.1338 0.027 
Kra30b 91420  0.0591 0.7121 0.1947 0.0536 0 
Chr25a 3796  6.9652 9.8894 12.497 2.6923 0 

 
Table V presents the results obtained for long runs on 

regular problems showing the apparent dominance of 
A-TS over the other four techniques presented. In half of 
the cases, our results achieve the exact best solutions in 
nearly all 100 trials, whereas in the rest, the average gap is 
below 0.1%.  

TABLE V.  
QUALITY OF VARIOUS HEURISTIC METHODS FOR REGULAR PROBLEMS 
AND LONG RUNS MEASURED IN PERCENT ABOVE THE BEST SOLUTION 

VALUE KNOWN. BEST RESULTS ARE IN BOLDFACE.  

Problem 
name 

Best 
known 
value 

RO-TS RE-TS SA GH A-TS 

Nug20 2570 0 0.911 0.070 0 0 
Nug30 6124 0.032 0.872 0.121 0.007 0 
Tai20a 703482 0.211 0.246 0.716 0.268 0.003 
Tai25a 1167256 0.510 0.345 1.002 1.189 0.312 
Tai30a 1818146 0.340  0.286 0.907 0.439 0.0005 
Tai35a 2422002 0.757  0.355 1.345 0.698 0.0664 
 
The above presented results show that for problem 

types Tai..b GH performs best and RO-TS performs 
slightly worst. On the contrary SA is not well adapted for 
this kind of problems and RE-TS is the worst method 
overall. For Tai..b problems A-TS shows slightly lower 
performance than for the other problem types.  

Under strong time constraints and for irregular 
problem instances A-TS and GH seem to be the best 
methods overall. It is important to mention that, for 
problem instances that originate from real life 
applications A-TS produces best quality solutions. 

For regular, unstructured problems A-TS outperforms 
all of the other methods for all of the problem instances 
considered.  

The solutions produced by A-TS for regular, 
unstructured problems have a slightly better quality than 
for irregular, structured problems. This can be explained 
by the fact that relatively good solutions of the 
unstructured problems are spread in the whole feasible 
solution set [6]. If all the good solutions are concentrated 

in a close subset of the feasible solutions, the performance 
of A-TS slightly decreases. When large number of 
relatively good solutions are spread all over the solutions 
space, our method effectively explores the solution space 
and always finds the optimal solutions. This indicates that 
A-TS implements good diversification strategy. 

Additional comparison of the algorithms, based on the 
number of iterations needed to achieve the optimal 
solution, was performed. A series of runs performed with 
the A-TS were compared with published results of the 
metaheuristic search techniques RE-TS and RO-TS.  

Table VI shows comparisons over some of the 
problems from the Taillard set, ranging in sizes from 12 
to 35. Hundred runs were performed on each problem by 
A-TS, opposed to 30 runs performed by the authors of the 
other approaches. The RE-TS and RO-TS data contained 
in this table was gathered from Battiti and Tecchiolli [2]. 
The best result in each row is bolded. 

TABLE VI.  
COMPARISON OF AVERAGE ITERATIONS BEFORE CONVERGENCE TO BEST 

SOLUTION FOR RE-TS, RO-TS, AND A-TS.  

Average iterations to best solution Problem 
name 

Best known 
value RE-TS RO-TS A-TS 

Tai12a 224416 282.3 210.7 165.7 
Tai15a 388214 1780.3 2168.0 2145.5 
Tai17a 491812 4133.9 5020.4 4094.25 
Tai20a 703482 37593.2 34279 31650.8 
Tai25a 1167256 38989.7  80280.4 16619.08 
Tai30a 1818146 68178.2 146315.7 81038.33 
Tai35a 2422002 281334.0  448514.5 240595.1 

 
The experimental results presented in Table VI show 

that our algorithm performs concurrently against other 
techniques. In nearly all of the cases, A-TS converges in 
less number of iterations than the other variations of Tabu 
Search. 

VIII. CONCLUSION 
This paper describes a novel approach to the Tabu 

search scheme. We propose a new decision making 
mechanism using a new evaluation function integrated 
within the standard TS. The resulting Adaptive Tabu 
Search (A-TS) augments the exploration and exploitation 
of the search space, through the incorporation of long-
term memory, aspiration criteria and the value of the 
move in a single evaluation function. Using search 
history, the adaptive coefficients within the combined 
evaluation function provide useful feedback to the 
process. Also, a new approach in coefficients tuning was 
presented. We propose implementation of a data mining 
technique for discovering interesting correlations between 
the coefficients being tuned and the quality of the 
produced solutions. 

Instances of the Quadratic Assignment problem were 
used for coefficients tuning and quantitative evaluation of 
the algorithm. The experimental results showed that A-TS 
performs favorably. In some cases, the optimal result was 
found in fewer number of iterations than other techniques. 
For most of the problems, especially for regular problem 
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instances and real life problem instances, A-TS seems to 
be the best choice.  

Although the aim of using a data mining technique was 
to improve this particular tabu search algorithm, the 
implications are quite general. The same ideas can easily 
be adapted and applied to other tabu search algorithms as 
well. The utilization of an established data mining 
technique for coefficients tuning significantly improves 
the hand-tuned algorithm. 

Based on the encouraging results, further research of A-
TS will be performed. Its implementation to more 
complex, real life problems, will provide more details of 
the algorithm quality and advantages. 
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