
‘

08

INTERNATIONAL SCIENTIFIC CONFERENCE
21 – 22 November 2008, GABROVO

MULTI-CLASS CLASSIFICATION USING SUPPORT VECTOR MACHINES IN
BINARY TREE ARCHITECTURE

Gjorgji Madzarov, Dejan Gjorgjevikj, Ivan Chorbev

 Department of Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology

Ss. Cyril and Methodius University - Skopje, Macedonia
e-mail: {madzarovg, dejan, ivan}@feit.ukim.edu.mk

Abstract
This paper presents architecture of Support Vector Machine classifiers arranged in a binary tree structure for solving

multi-class classification problems with increased efficiency. The proposed SVM based Binary Tree Architecture (SVM-BTA)
takes advantage of both the efficient computation of the tree architecture and the high classification accuracy of SVMs.
Clustering algorithm is used to convert the multi-class problem into binary tree, in which the binary decisions are made by the
SVMs. The proposed clustering model utilizes distance measures at the kernel space, not at the input space. The performance
of this method was measured on the problem of recognition of handwritten digits and letters using samples from MNIST,
Pendigit, Optdigit and Statlog database of segmented digits and letters. The results of the experiments indicate that this
method has much faster training and testing times than the widely used multi-class SVM methods like “one-against-one” and
“one-against-all” while keeping comparable recognition rates. The experiments showed that this method becomes more
favorable as the number of classes in the recognition problem increases.

Keywords: Support Vector Machine, multi-class classification, clustering, binary tree architecture.

INTRODUCTION

Recent results in pattern recognition have
shown that SVM (Support Vector Machine)
classifiers often have superior recognition rates in
comparison to other classification methods.
However, the SVM was originally developed for
binary decision problems, and its extension to
multi-class problems is not straight-forward. How
to effectively extend it to solve multi-class
classification is still an on-going research issue.
The popular methods for applying SVMs to
multi-class classification problems usually
decompose the multi-class problems into several
two-class problems that can be addressed directly
using several SVMs.

For the readers’ convenience, we will
introduce the SVM briefly in Section 2. A brief
introduction to several widely used multi-class
classification methods that utilize binary SVMs
will be given in Section 3. The Kernel-based
clustering introduced to convert the multi-class
problems into SVM-based binary-tree
architectures is explained in Section 4. The
experimental results are presented to compare the
performance of the proposed SVM-BTA with
traditional multi-class approaches in Section 5.
Section 6 gives a conclusion of the paper.

SUPPORT VECTOR MACHINES FOR
PATTERN RECOGNITION

The support vector machine is originally a
binary classification method developed by
Vapnik and colleagues at Bell laboratories [1][2],
with algorithm improvements by others [3]. SVM
consists of projecting the input vectors into a high
dimensional feature space, and then searching for
the linear decision boundary that maximizes the
minimum distance between two class groups
(Figure 1).

Fig. 1. General principle of SVM: projection

 413

of data in an optimal dimensional space.
On Figure 1 we can see that data are not

linearly separable in the initial space a) and after
projection (by mapping Φ) they become separable
in the high dimensional space b). SVM then
consists of finding the optimal boundary for
separating the positive class (dark circles) from
the negative one (white circles).

SVM separates between these two classes via
a hyperplane that is optimally positioned to
maximize the margin between the positive
samples and the negative ones (Figure 1), then
‘plot’ the test data at the high dimensional space,
distinguishing whether it belongs to positive or
negative side according to the optimal
hyperplane.

For a binary classification problem with input
space X and binary class labels Y:

Y {−1, 1} (1)

Giving training samples (y1, x1),, (yl, xl).

yi {−1, 1} (2)

the goal of SVM is to search for the optimal
hyperplane

w · x + b = 0 (3)

with variables w and b that satisfy the following
inequality

yi(w · xi + b) ≥ 1, i = 1, . . . , l, (4)

defining the minimum distance between two class
groups in the new projection.

w

wx

w

wx
bwd

T

yx

T

yx

maxmin

1/1/

, (5)

From e.q. (4), and 1min
}1:{

yx
yx

1min
}1:{

yx
yx

Substituting back into e.q. (5), yields

 .
22

,
000

00
www

bwd (6)

For a given training set w, b that maximizes
d(w0, b0) solve the following quadratic
optimization problem:

ww
w

2

1
min

satisfying yi(w · xi + b) ≥ 1, i = 1, . . . , l (7)

If the given training sample set is linearly

separable, the optimization problem (7) has
feasible solutions. The optimal solution w and b
forms the best hyperplane that maximizes the
margin between two different classes in the new
projection. Because SVM search for the best
separation hyperplane instead of the highest
training sample accuracy, they never over-train
on a sample data set. If the parameters are
properly selected, SVM typically produces both
excellent classification results and good
generalization. Not every problem is guaranteed
to be linearly separable, so a soft margin
hyperplane SVM was developed to separate the
training set with a minimal number of errors [4].
A number of candidate kernel functions have
been used in SVM, including polynomial

 dyxyxK 1, (8)

exponential RBF

22
exp,

yx

yxK (9)

and Gaussian RBF

 2

2

2
exp,

yx

yxK (10)

For the new data point x, the classification is then
performed as

SVN

i
iii bxxKyxfxfsigny

1

),()()),((
 (11)

Where NSV is the number of support vectors.

OVERVIEW OF WIDELY USED MULTI-
CLASS CLASSIFICATION METHODS

Although SVMs were originally designed as
binary classifiers, approaches that address a
multi-class problem as a single “all-together”
optimization problem exist [5], but are
computationally much more expensive than
solving several binary problems.

 A variety of techniques for decomposition of
the multi-class problem into several binary
problems using Support Vector Machines as
binary classifiers have been proposed, and several
widely used are:

 414

 One-against-all
For the N-class problems (N>2), N 2-class

SVM classifiers are constructed [4]. The ith SVM
is trained while labeling all the samples in the ith
class as positive examples and the rest as negative
examples. In the recognition phase, a test
example is presented to all N SVMs and is
labeled according to the maximum output among
the N classifiers. The disadvantage of this method
is that the number of training samples is too large,
so it is difficult to train.
 One-against-one

This algorithm constructs N(N-1)/2 2-class
classifiers, using all the binary pair-wise
combinations of the N classes. Each classifier is
trained using the samples of the first class as
positive examples and the samples of the second
class as negative examples. To combine these
classifiers, it naturally adopts Max Wins
algorithm that finds the resultant class by first
voting the classes according to the results of each
classifier and then choosing the class that is voted
most [6]. The disadvantage of this method is that
every test sample has to be presented to large
number of classifiers (N(N-1)/2). This results in
faster training but slower testing, especially when
the number of the classes in the problem is big
[7].
 Directed acyclic graph SVM (DAGSVM)

Introduced by Platt [1] the algorithm for
training a N(N-1)/2 classifiers is the same as in
one-against-one. In the recognition phase,
DAGSVM depends on a rooted binary directed
acyclic graph to make a decision [8]. When a test
sample reaches the leaf node, the final decision is
made. A test example is presented only to the N-1
SVMs in the nodes on the decision path. This
results in significantly faster testing while
keeping very similar recognition rate as One-
against-one.
 Binary Tree of SVM (BTS)

This method uses multiple SVMs arranged in a
binary tree structure [9]. A SVM in each node of
the tree is trained using two of the classes. The
algorithm then employs probabilistic outputs to
measure the similarity between the remaining
samples and the two classes used for training. All
samples in the node are assigned to the two
subnodes derived from the previously selected
classes by similarity. This step repeats on every
node until each node contains only one class
samples. The main problem that should be
considered seriously here is training time,
because, one has to test all samples in every node

to find out which classes should be assigned to
which subnode while building the tree. This may
decrease the training performance considerably
for huge training datasets.

In this paper we propose a binary tree
architecture that uses SVMs for making the
binary decisions in the nodes. The proposed
classifier architecture SVM-BTA (Support Vector
Machines with Binary Tree Architecture), takes
advantage of both the efficient computation of the
tree architecture and the high classification
accuracy of SVMs. Utilizing this architecture,
N–1 SVMs are needed to be trained for an
N-class problem (like in one-aginst-all), but only

 N2log SVMs are required to be consulted to

classify a sample. This can lead to a dramatic
improvement in recognition speed when
addressing problems with big number of classes.

SUPPORT VECTOR MACHINES IN BINARY TREE
ARCHITECTURE (SVM-BTA)

As shown on Figure 2, the SVM-BTA solves
an N-class pattern recognition problem utilizing a
binary tree, in which each node makes binary
decision using a SVM. The hierarchy of binary
decision subtasks should be carefully designed
before the training of each SVM classifier.

4,5,1,6,2,3

SVM

Fig 2. Illustration of SVM-BTA

The recognition of each pattern starts at the

root of the tree. At each node of the binary tree a
decision is being made about the assignment of
the input pattern into one of the two possible
groups represented by transferring the pattern to
the left or right sub-tree. Each of these groups
may contain multiple classes. This is repeated
downward the tree until the sample reaches a leaf
node that represents the class it has been assigned
to.

There exist many ways to divide the classes
into 2 groups, and it is critical to have proper

SVM SVM

SVM SVM 1 3

4 5 6

4,5,1 6,2,3

6,2 4,5

2

 415

grouping for the good performance of SVM-
BTA.

For consistency between the clustering model
and the way SVM calculates the decision
hyperplane the clustering model utilizes distance
measures at the kernel space, not at the input
space. Because of this, all training samples are
modified with the same kernel function that is to
be used in the training phase.

The SVM-BTA method that we propose
consists of two major steps: (1) computing a
clustering of the classes and (2) associating a
SVM at each node of the taxonomy obtained by
(1).

Let’s take a set of samples x1, x2, ..., xn labeled
each one by yi {c1, c2, ..., ck} where k is the
number of classes. The first step of SVM-BTA
method consists of calculating the gravity centers
for the k known classes. Distance matrix with
dimension kk is created and its cells are filled
with the Euclidean distances between the centers
of i-th class and j-th class, where i and j are cell
indexes. We start with randomly selecting one
class from the classes in the corresponding node
and adding it into a list. Then the matrix is
searched for a class that has smallest distance to
the already selected class. This class is added into
the same list too. The algorithm proceeds with
searching the nearest class to the last added class
into the list which is not already added in it. This
process continues until all the classes in the
corresponding node are added to the list.

We always tend the binary tree for the SVM-
BTA to be as balanced as possible, leading to best
decision efficiency. To accomplish this, the
classes from the first half of the list are assigned
to the first group and the classes from the second
half to the second group.

In the second step, each SVM is associated to
a node and trained with the elements of the two
groups of the corresponding node. For example,
in Figure 2 which illustrates clustering of 6
classes, the SVM classifier in the root is trained
by considering samples from the classes {c1, c4,
c5} as positives examples and samples from the
classes {c2, c3, c6} as negative examples. The
SVM classifier in the left child of the root is then
trained by considering samples from the classes
{c4, c5} as positives and samples from the class c1
as negative examples. The concept is repeated for
each SVM associated to a node in the taxonomy.
This will result in training only k−1 SVMs for
solving a k-class problem.

EXPERIMENTS

In this section, we present the results of our
experiments with several multi-class problems.
The performance was measured on the problem
of recognition of handwritten digits and letters.

Training and testing of the SVMs was
performed using a custom developed application
that uses the Torch library [10]. For solving the
partial binary classification problems SVMs
using Gaussian kernel were used.

Here, we compare the results of the proposed
SVM-BTA method with the following methods:

1) one-against-all (OvA);
2) one-against-one (OvO);
3) DAGSVM;
4) BTS;
The most important criterion in evaluating the

performance of a classifier is usually its
recognition rate, but very often the training and
testing time of the classifier are equally
important.

In our experiments 4 different multi-class
classification problems were addressed by each of
the 5 previously mentioned methods. For every
method the training and testing time and the
recognition performance were recorded.

The first problem was recognition of isolated
handwritten digits from the MNIST database. The
MNIST database [11] contains grayscale images
of isolated handwritten digits. From each digit
image, after performing a slant correction, 40
features were extracted. The features are
consisted of 10 horizontal, 8 vertical and 22
diagonal projections [12]. The MNIST database
contains 60.000 training samples, and 10.000
testing samples.

The second and the third problem are 10-class
problems from the UCI Repository [13] of
machine learning databases: optdigit and
pendigit. Pendigit has 16 features, 7494 training
samples, and 3498 testing samples. Optdigit has
64 features, 3823 training samples, and 1797
testing samples.

The fourth problem was recognition of isolated
handwritten letters – a 26-class problem from the
Statlog collection [14]. Statlog-letter contains
15.000 training samples, and 5.000 testing
samples, while each sample is represented by 16
features.

The classifiers were trained using all available
training samples for the set and were evaluated by
recognizing all the test samples for the
corresponding set. All tests were performed on

 416

personal computer with Intel Core2Duo processor
at 1.86GHz on Windows XP.

Tables 1 to 4 show the results of the
experiments using 5 different approaches on each
of the 4 data sets. The first column of each of the
tables describes the combining method of binary
SVM classifiers: one-against-all (OvA), one-
against-one (OvO), DAGSVM, BTS and SVM-
BTA. In the second column the training
parameters σ and C are given. The last three
columns present the error-rate, the training time
and the testing time for the corresponding
method.

The results in table 1 show that for the MNIST
database (10 classes, large number of samples)
OvA method shows the lowest error rate, but is
also slowest to train. The other methods show
higher but similar error rates. The DAGSVM
method shows fastest training and testing times.

Table 1. Recognition results, training and testing times for
the MNIST dataset

Time(s)
Classifier σ, С

Error-
rate(%) test train

OvA 2, 100 1.93 23.56 468.94
OvO 2, 100 2.43 26.89 116.96

DAGSVM 2, 100 2.50 9.46 116.96
ВТЅ 2, 100 2.24 26.89 240.73

SVM-BTA 2, 100 2.66 13.35 399.25

Table 2. Recognition results, training and testing times for
the pendigit dataset

Time(s)
Classifier σ, С

Error-
rate(%) test train

OvA 60, 100 1.70 1.75 4.99
OvO 60, 100 1.94 3.63 3.11

DAGSVM 60, 100 1.97 0.55 3.11
ВТЅ 60, 100 1.94 0.57 5.21

SVM-BTA 60, 100 1.91 0.61 1.62

Table 3. Recognition results, tarining and testing times for
the optdigit dataset

Time(s)
Classifier σ, С

Error-
rate(%) test train

OvA 26, 100 1.17 1.68 3.92
OvO 26, 100 1.51 2.10 2.45

DAGSVM 26, 100 1.55 0.62 2.45
ВТЅ 26, 100 1.51 0.65 4.68

SVM-BTA 26, 100 1.55 0.64 1.51

Table 4. Recognition results, tarining and testing times for
the statlog dataset

Time(s)
Classifier σ, С

Error-
rate
(%) test Train

OvA 1.1, 100 3.20 119.5 554.2
OvO 1.1, 100 4.72 160.5 80.9

DAGSVM 1.1, 100 4.74 12.5 80.9
ВТЅ 1.1, 100 4.70 17.2 387.1

SVM-BTA 1.1, 100 4.48 13.2 63.7

From the results in table 2 and table 3 we can
see that methods one-against-one (OvO),
DAGSVM, BTS and our method SVM-BTA can
reach almost the same accuracy. The method one-
against-all (OvA) is more accurate than the other
methods, which is apparent in both cases. Among
all the methods, SVM-BTA is the fastest one in
the training phase. Testing time is comparable in
methods DAGSVM, BTS and SVM-BTA and
they are noticeably better then testing time of
one-against-all (OvA) and one-against-one (OvO)
methods. However, if the number of the classes is
relatively small, the advantage of SVM-BTA is
not that evident.

For the three 10-class problems it can be
noticed that OvA approach has the lowest error
rate. On the other hand, the time needed to train
the 10 classifiers for the OvA approach took
about 4 times longer than training the 45
classifiers for the OvO and DAGSVM methods.
The DAGSVM method showed to be the fastest
in the recognition phase but also produces the
biggest error rate.

The third problem was recognition of
handwritten letters from the Statlog database
[14]. Table 4 presents the results of the
experiment for this 26-class problem. Again the
OvA method showed the lowest error rate but the
longest training time. The OvO, DAGSVM and
the BTS method achieved very similar error rates
that were about 1.5% higher than the OvA
method. The DAGSVM is again fastest in
recognition being almost 10 times faster than
OvA. The time needed for training of the 26 one-
against-all SVMs was almost 7 times longer than
the time for training the 325 one-against-one
SVMs. The BTS method showed the lowest error
rate of the methods that use one-against-one
SVMs. The SVM-BTA method showed better
recognition rate than the methods using one-
against-one SVMs while being only slightly
slower in recognition than DAGSVM and the
fastest while training.

 417

 418

CONCLUSION

We have presented a novel method of
arranging a binary classifiers like support vector
machines in order to solve a multi-class problem.
The proposed Support Vector Machines in Binary
Tree Architecture (SVM-BTA) method was
designed to provide superior recognition speed
utilizing decision tree architecture, while keeping
comparable recognition rate to the other known
methods. Clustering algorithm that utilizes
distance measures at the kernel space is used to
convert the multi-class problem into binary tree,
in which the binary decisions are made by the
SVMs. The experiments performed on 4 different
datasets of handwritten digits and letters have
shown that this method has one of the fastest
training times while keeping similar recognition
rate to the other methods. SVM-BTA is becoming
more favorable to the other compared methods as
the number of classes in the problem increases.

REFERENCE
[1] V. Vapnik, The Nature of Statistical Learning

Theory, second ed., Springer, New York, 1999.
[2] C. J. C. Burges, A tutorial on support vector

machine for pattern recognition, Data Min.
Knowl. Disc. 2 (1998) 121.

[3] T. Joachims, Making large scale SVM learning
practical, in B. Scholkopf, C. Bruges and A.
Smola (eds), Advances in kernel methods-support
vector learning, MIT Press, Cambridge, MA,
1998.

[4] V. Vapnik. Statistical Learning Theory, Wiley,
New York, 1998.

[5] J. Weston, C. Watkins, Multi-class support vector
machines, Proceedings of ESANN99, M.
Verleysen, Ed., Brussels, Belgium, 1999.

[6] J. H. Friedman, Another approach to
polychotomous classification, Technical report,
Department of Statistics, Stanford University,
1997.

[7] P. Xu, A. K. Chan, Support vector machine for
multi-class signal classification with unbalanced
samples, Proceedings of the International Joint
Conference on Neural Networks 2003, Portland,
pp.1116-1119, 2003.

[8] Platt, N. Cristianini and J. Shawe-Taylor, Large
margin DAGSVM’s for multiclass classification,
Advances in Neural Information Processing
System, Vol. 12, pp. 547–553, 2000.

[9] B. Fei, J. Liu, Binary Tree of SVM: A New Fast
Multiclass Training and Classification Algorithm,
IEEE Transaction on neural networks, Vol. 17,
No. 3, May 2006.

[10] R. Collobert, S. Bengio and J. Mariéthoz, Torch:
a modular machine learning software library,
Technical Report IDIAP-RR 02-46, IDIAP,
2002.

[11] ____, MNIST, MiniNIST, USA
http://yann.lecun.com/exdb/mnist

[12] D. Gorgevik, D. Cakmakov, An Efficient Three-
Stage Classifier for Handwritten Digit
Recognition, Proceedings of 17th Int. Conference
on Pattern Recognition, ICPR2004, Vol. 4, pp.
507-510, IEEE Computer Society, Cambridge,
UK, 23-26 August 2004.

[13] C. Blake, E. Keogh and C. Merz, UCI
Repository of Machine Learning Databases,
(1998). Statlog Data Set,
http://www.ics.uci.edu/mlearn/MLRepository.ht
ml [Online]

[14] Statlog Data Set, ftp://ftp.ncc.up.pt/pub/statlog/
[Online]

http://yann.lecun.com/exdb/mnist
http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

