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Abstract. Multi-label classification (MLC) problems abound in many
areas, including text categorization, protein function classification, and
semantic annotation of multimedia. Issues that severely limit the appli-
cability of many current machine learning approaches to MLC are the
large-scale problem and the high dimensionality of the label space, which
have a strong impact on the computational complexity of learning. These
problems are especially pronounced for approaches that transform MLC
problems into a set of binary classification problems for which SVMs are
used. On the other hand, the most efficient approaches to MLC, based
on decision trees, have clearly lower predictive performance. We propose
a hybrid decision tree architecture that utilizes local SVMs for efficient
multi-label classification. We build decision trees for MLC, where the
leaves do not give multi-label predictions directly, but rather contain
SVM-based classifiers giving multi-label predictions. A binary relevance
architecture is employed in each leaf, where a binary SVM classifier is
built for each of the labels relevant to that particular leaf. We use several
real-world datasets to evaluate the proposed method and its competition.
Our hybrid approach on almost every classification problem outperforms
the predictive performances of SVM-based approaches while its compu-
tational efficiency is significantly improved as a result of the integrated
decision tree.
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1 Introduction

Single-label classification is concerned with learning from examples, each associ-
ated with a single label λi from a finite set of disjoint labels L = {λ1, λ2, ..., λQ},
Q > 1. The task is to learn a mapping l: X → L (where X denotes the example
space) that assigns a single label to each example. For Q > 2, the task is referred
to as a multi-class classification.

In multi-label classification (MLC), the task is to learn a mapping m: X →
2L. Each example x ∈ X is associated to a set of labels Y ⊆ L. In contrast to
multi-class classification, the labels are not assumed to be mutually exclusive,
i.e., an example can be a member of more than one class. The labels in Y are
called relevant and those in L\Y irrelevant for a given example.
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Two major classes of algorithms for multi-label classification are decision-
tree-based and SVM-based approaches. The first group is extremely efficient,
but not very accurate while the second group, represented by the problem trans-
formation SVM architectures [14] are very accurate, but can be computationally
expensive, especially when labels abound. In this paper, we propose a novel hy-
brid architecture that integrates Decision Trees and Support Vector Machines for
computationally efficient multi-label classification (ML-SVMDT) on large-scale
problems with a large number of labels.

Section 2 surveys related previous work in multi-label learning. The architec-
ture that we propose is presented in Section 3. Section 4 presents the experimen-
tal results that compare the performance of our architecture with the competing
methods. The conclusions are given in Section 5.

2 Related Work

2.1 The landscape of MLC approaches

The issue of learning from multi-label data has recently attracted significant at-
tention from many researchers. They are motivated by an increasing number of
new applications, such as semantic annotation of images and video, functional
genomics, music categorization into emotions, text classification, directed mar-
keting and others. Many different approaches have been developed to solve the
multi-label learning problems. Tsoumakas et al.[14] summarize them into two
main categories: a) algorithm adaptation methods, and b) problem transforma-
tion methods. Algorithm adaptation methods extend specific learning algorithms
to handle multi-label data directly. Examples include lazy learning [18], decision
trees [2], neural networks [17], boosting [11], etc.

ML-C4.5 [2] is an adaptation of the well known C4.5 algorithm for multi-label
learning. Clare et al. modified the formula of entropy calculation (equation 1)
in order to solve multi-label problems. The modified entropy sums the entropies
for each individual class label.

entropy(S) = −
N∑
i=1

(p(ci) log p(ci) + q(ci) log q(ci)) (1)

where S is the set of examples, p(ci) is the relative frequency of class label ci and
q(ci) = 1−p(ci). They also allowed multiple labels in the leaves of the tree. Each
leaf is represented by the most frequent set of class labels that are associated to
the training examples that belong to that leaf. If more than 50% of the training
examples in the leaf are labeled with a particular label then that label belongs
to the set of most frequent labels.

ML-kNN [18] is based on the popular k Nearest Neighbors (kNN) lazy learn-
ing algorithm. The first step in this approach is the same as in kNN, i.e., re-
trieving the k nearest examples. It uses the maximum a posteriori principle in
order to determine the label set of the test example, based on prior and posterior
probabilities i.e. the frequency of each label within the k nearest neighbors.
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Problem transformation methods, on the other hand, transform the multi-
label learning problem into one or more single-label classification problems. The
simplest and the most efficient strategy in terms of computational complexity
in the multi-label setting is the one-against-all strategy, also referred to as the
binary relevance (BR) method [14]. It addresses the multi-label learning problem
by learning Q binary classifiers - one classifier for each label L. It transforms the
original data set into Q data sets Sλi , i = 1...Q that contain all examples of the
original data set, labeled positively if the label set of the original example con-
tained λi and negatively otherwise. For the classification of a new instance, each
binary classifier predicts whether its label λi is relevant for the given example or
not. Actually, BR outputs the union of the labels λi that are positively predicted
by the Q classifiers. In the ranking scenario, the labels are ordered according to
the probability associated to each label by the respective binary classifier.

A method closely related to the BR method is the Classifier Chain method
(CC) proposed by Read et al. [10]. This method involves Q binary classifiers as
in BR. Classifiers are linked along a chain where each classifier deals with the
binary relevance problem associated with label λi ∈ L. The feature space of each
link in the chain is extended with the 0/1 label associations of all previous links.

HOMER (Hierarchy Of Multi-label classifiERs) [15] is a computationally effi-
cient multi-label classification method specifically designed for large multi-label
datasets. HOMER constructs a hierarchy of multi-label classifiers, each one deal-
ing with a much smaller set of labels compared to Q (the total number of labels)
and a more balanced example distribution. This leads to improved predictive
performance and also to linear training and logarithmic testing complexities
with respect to Q. One of the main processes within HOMER is the even distri-
bution of a set of labels into k disjoint subsets so that similar labels are placed
together and dissimilar apart. The best predictive performance is reported using
a balanced k means algorithm customized for HOMER [15].

Recently the most challenging issues in MLC are the high dimensionality of
the label space and the problem of large datasets. These two problems can signifi-
cantly influence on the computational complexity and the predictive performance
of the MLC methods. Some proposed methods achieve higher computational effi-
ciency at the cost of predictive accuracy, such as ML-kNN [18], ML-C4.5 [2], etc.
These methods usually belong to the group of algorithm adaptation methods.
Other proposed methods, based on problem transformation, use base classifiers
with higher computational efficiency, such as Naive Bayes [7] [15], the one-layer
perceptron [9], etc., in order to reduce the computational complexity.

2.2 Combining decision trees and SVMs

Several approaches that combine decision trees and SVMs have been proposed
for binary and multi-class classification. For example, Kumar et al. [8] propose a
method that combines decision trees and global SVM models (models learned on
the whole dataset) for solving binary classification problems. Other approaches,
such as [3], use the structure of the decision tree to organize/arrange SVM
classifiers in its nodes in order to improve the computational efficiency and the
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Table 1. The process of building the ML-SVMDT
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an architecture that will improve the predictive performance and the computa-
tional efficiency.

Throughout the literature, BR is often mentioned but consistently sidelined
on the grounds of its assumption of label independence. That is to say, during the
transformation process BR ignores label correlations that exist in the training
data. BR predicted label sets are likely to contain either too many or too few
labels, or labels that would never co-occur in practice. In order to avoid these
inconsistencies in the multi-label prediction of the BR method, we employed the
ML-C4.5 method. In this context, the ML-C4.5 method actually tries to separate
the training examples in groups where the label inconsistency will be eliminated.
It finds the correlation between labels and according to that correlation it splits
the global problem into several local subproblems.

The procedure (ML-SVMDT(S)) of building the architecture is outlined in
Table 1. It takes as input a set of examples (S) and outputs a tree. The process
of building starts at the root of the tree with choosing one feature (f) of the
data that most effectively splits the dataset of examples into subsets (P). The
criterion is the normalized information gain (difference in entropy g) that results
from choosing a feature for splitting the data (line 6 of BestFeature procedure
in Table 1). The feature with the highest normalized information gain is chosen
to make the decision. The process continues recursively in each node until all
the examples are labeled with the same labels or none of the features provide
any information gain. Tree building also stops if some predetermined minimal
number of examples per node is reached. The function Acceptable(f,P) provides
this information about the stopping criteria. When at least one of those criteria
is satisfied, the process of splitting the dataset stops and the corresponding node
is declared as a leaf. After that, we try to solve the ”new” problem defined on
the examples in the leaf by using a local model. This means that every leaf of
the decision tree is replaced with one local model built by the BR method, using
SVMs as base classifiers for solving the partial binary classification problems
(Figure 1).

Table 1. The process of building the ML-SVMDT

procedure ML-SVMDT(S) returns tree

1: (f∗, g∗,P∗) = BestFeature(S)
2: if f∗ 6= none then
3: for each Sk ∈ P∗ do
4: treek = ML-SVMDT(Sk)

5: return node(f∗,
⋃

k{treek})
6: else
7: localSVM = trainBRModel(S)
8: return leaf(localSVM)

procedure BestFeature(S)

1: (f∗, g∗,P∗) = (none, 0, ∅)
2: for each feature f do
3: P = partition induced by f on S
4: g = entropy(S)−∑

Sk∈P
|Sk|
|S| entropy(Sk)

5: if (g > g∗) ∧Acceptable(f,P) then
6: (f∗, g∗,P∗) = (f, g,P)

7: return (f∗, g∗,P∗)

predictive performance. Boosting ensemble of support vector machines for multi-
class classification was proposed in [13]. Gama [5] proposed functional trees
for multi-class classification and regression problems. However, none of these
approaches deal with MLC problems.

3 Integration of Decision Trees and SVMs

In this paper, we propose a novel hybrid approach for computationally efficient
multi-label classification that combines the algorithm adaptation method ML-
C4.5 [2] and the problem transformation method Binary Relevance (BR) [14]:
The latter uses SVMs as base classifiers for solving the partial binary classifica-
tion problems. The main idea of our approach is to use the advantages of both
methods - the low computational complexity of ML-C4.5 and the predictive
accuracy of the BR architecture with SVM classifiers.

One approach to achieve effective and computationally efficient multi-label
classification is to partition the global classification problem first and then learn
local classifiers for each of those partitions (subproblems) separately. In the pre-
diction phase, first one tries to determine the partition to which a test example
belongs, and then to classify the example using a local classifier trained using
the examples belonging to that partition only. The logic behind this approach
is that the ”neighbors” of a test example (training examples that belong to the
same partition as the test example), would be able to provide more accurate
information about it faster.

We propose a novel hybrid architecture that introduces local models for solv-
ing multi-label learning problems, based on SVM classifiers. Our approach com-
bines the ML-C4.5 method for partitioning the input feature space and the BR
method utilizing SVMs as base classifiers for local classification. The main idea
is to use the advantages of both methods, in order to build an architecture that
will improve the predictive performance and the computational efficiency.

Throughout the literature, BR is often mentioned, but consistently criti-
cized on account of its assumption of label independence. Namely, during the
transformation process, BR ignores label correlations that exist in the training
data. In order to reduce these inconsistencies in the multi-label prediction of
the BR method, we employed the ML-C4.5 method. In this context, the ML-
C4.5 method actually tries to separate the training examples in groups where



ML-SVMDT 5

f1<3

f2<6

LSVM-3f1<1

f2<5

f1<6

LSVM-1 LSVM-2 LSVM-5 LSVM-6

LSVM-4

f1<3

f2<6

f1<1

f2<5

f1<6

LSVM-2LSVM-1

LSVM-3

LSVM-4

LSVM-5 LSVM-6

Fig. 1. ML-SVMDT splits the original dataset into subsets and builds a local SVM
model (LSVM) for each partition

the label inconsistency will be eliminated. It finds the correlation between labels
and according to that correlation it splits the global problem into several local
subproblems.

The procedure (ML-SVMDT(S)) of building the architecture is outlined in
Table 1. It takes as input a set of examples (S) and outputs a tree. The process
of building starts at the root of the tree with choosing one feature (f) of the data
that most effectively splits the dataset of examples into subsets (P). The criterion
is the normalized information gain (difference in entropy g) that results from
choosing a feature for splitting the data (line 6 of BestFeature procedure in Table
1). The feature with the highest normalized information gain is chosen to make
the decision. The process continues recursively in each node until all the examples
are labeled with the same labels or none of the features provide any information
gain. Tree building also stops if some predetermined minimal number of examples
per node is reached. If no acceptable feature can be found or some predetermined
minimal number of examples per node is reached (Acceptable(f,P)), the process
of splitting the dataset stops and the corresponding node is declared as a leaf.
After that, we try to solve the ”new” problem defined on the examples in the
leaf by using a local model. This means that every leaf of the decision tree is
replaced with one local model built by the BR method on the training examples
that belong to the corresponding leaf, using SVMs as base classifiers (Figure 1).
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The testing for each test example starts at the root of the tree. The decision
tree transfers the example to exactly one leaf of the tree according to its features.
The final decision about the labeling of the test example is performed by the
local model in the corresponding node consisting of SVMs. Each test example
consults only one local model in order to be classified. The testing time for each
test example is the sum of the time needed to sort the example through the
decision tree and the time needed for the corresponding local model to make a
decision.

4 Experiments

In this section the performance of the proposed method is compared to the
performances of the competing method for multi-label learning in domains with
large number of labels (HOMER [15]) and two additional state of the art methods
(Classifier Chains - CC [10] and ML-kNN [18]). We also compare it to the two
methods that it integrates, the ML-C4.5 [2] method and the BR [14] method.
The performance is measured in terms of five different multi-label evaluation
measures (two example based measures - Hamming loss and precision, two label
based measures - micro precision and macro precision and one ranking based
measure - average precision) [16]. In the results we also report the training and
the testing times of all methods (measured in seconds).

4.1 Datasets and experimental setup

Five different multi-label classification problems were addressed in our experi-
ments. The predictive performance in terms of the measures mentioned above
and the training and testing times were recorded for every method for each
classification problem. The complete description of the datasets in terms of ap-
plication domain (domain), the number of training (#tr.e.) and test (#t.e.)
examples, the number of features (D), the total number of labels (Q) and label
cardinality (lc) [14] are shown in Table 2.

Table 2. Dataset description.

domain #tr.e. #t.e. D Q lc

corel5k [4] image 4500 500 499 374 3.52
mediamill [12] video 30993 12914 120 101 4.38
bibtex [7] text 4880 2515 1836 159 2.40
delicious [15] text 12920 3185 500 983 19.02
bookmarks [7] text 60000 27856 2150 208 2.03

We strived to include a considerable variety and scale of multi-label datasets.
In total we use five datasets, with dimensions ranging from 101 to 983 labels,
and from less than 5,000 examples to almost 90,000. The datasets are roughly
ordered by complexity (#tr.e. × D × Q).
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The training and testing of the proposed method were performed using a
custom developed application that uses the MULAN library1 for the machine
learning framework Weka [6]. We implemented the ML-C4.5 method within the
same library, while HOMER and BR was already implemented in MULAN. For
the CC method we used the MEKA2 extension for the WEKA framework. All
experiments were performed on a server with an Intel Xeon processor at 2.50GHz
on 64GB of RAM with the Fedora 14 operating system.

The LIBSVM library [1], and in particular SVMs with a radial basis kernel,
were used for solving the binary classification problems for all datasets in the
BR, CC, HOMER and the proposed method. The kernel parameter gamma and
the penalty C for the datasets for each method were determined by 10-fold cross
validation using only the training sets. The values 2−15, 2−13, ..., 21, 23 were con-
sider for gamma and 2−5, 2−3, ..., 213, 215 for the penalty C. After determining
the best parameters values for each method on every dataset the classifiers were
trained using all available training examples and were evaluated by recognizing
all test examples from the corresponding dataset.

The ML-C4.5 method uses subtree raising with a pruning confidence of 0.25
as a post pruning strategy in all classification problems. The number of neighbors
in the ML-kNN method for each dataset was determined from the values 6 to
20 with step 2 for which the best results were obtained. To define the subsets
of labels in each level of the hierarchy in HOMER, we used the balanced k
means algorithm proposed by the original authors. This algorithm requires one
parameter to be configured: number of subsets k. Five different values (2-6)
were considered in the experiments for this parameter. These values were used
by the authors [15]. For all methods, the best obtained results are presented in
the Results subsection. Additionally, to access the dependence of the predictive
performance and the computational complexity of ML-SVMDT on the minimal
number of examples in the leaves of the decision tree, we tried six different values
of the minimal number of examples (30-80) in the leaves. Overall, the proposed
architecture obtained the best predictive performance when the minimal number
of examples in the leaves was set to 70 and these results are presented in the
Results subsection.

4.2 Results

Table 3 gives the predictive performance in terms of the five evaluation measures,
the training and testing times for each method on each of the datasets. The first
column of the table lists the evaluation measures, while the second column lists
the classification problems. The remaining columns show the performance of each
method for every dataset. The best results per dataset in the table are shown
in boldface. DNF in the results indicates that the experiment Did Not Finish
within one week under the available resources. Training time of the ML-kNN
method is the time needed for calculating the posterior probability of each label
within the k nearest neighbors.

1 http://mulan.sourceforge.net/
2 http://meka.sourceforge.net/
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Table 3. The predictive performance in terms of the five evaluation measures, the
training and the testing times measured in seconds

datasets BR CC ML-C4.5 ML-kNN HOMER ML-SVMDT
corel5k 0.017 0.017 0.010 0.009 0.012 0.009
mediamill 0.032 0.032 0.044 0.031 0.038 0.032
bibtex 0.012 0.012 0.016 0.014 0.014 0.012
delicious 0.018 0.018 0.019 0.018 0.022 0.018
bookmarks DNF DNF 0.009 0.009 DNF 0.009
corel5k 0.042 0.042 0.005 0.035 0.317 0.127
mediamill 0.731 0.741 0.056 0.724 0.597 0.727
bibtex 0.515 0.508 0.123 0.254 0.472 0.484
delicious 0.443 0.399 0.001 0.424 0.369 0.486
bookmarks DNF DNF 0.271 0.218 DNF 0.281
corel5k 0.061 0.061 0.160 0.730 0.308 0.664
mediamill 0.742 0.753 0.597 0.739 0.569 0.749
bibtex 0.753 0.744 0.359 0.819 0.547 0.789
delicious 0.658 0.660 0.000 0.651 0.396 0.662
bookmarks DNF DNF 0.632 0.850 DNF 0.855
corel5k 0.052 0.053 0.004 0.031 0.044 0.055
mediamill 0.112 0.144 0.046 0.308 0.107 0.258
bibtex 0.528 0.539 0.128 0.192 0.391 0.495
delicious 0.299 0.303 0.000 0.134 0.154 0.312
bookmarks DNF DNF 0.292 0.414 DNF 0.485
corel5k 0.303 0.293 0.196 0.266 0.222 0.306
mediamill 0.686 0.672 0.669 0.703 0.583 0.698
bibtex 0.597 0.599 0.392 0.349 0.407 0.563
delicious 0.351 0.343 0.321 0.326 0.231 0.362
bookmarks DNF DNF 0.378 0.381 DNF 0.421
corel5k 926 1225 369 389 771 274
mediamill 85468 100435 2030 1094 78195 9015
bibtex 11013 12434 566 124 2869 767
delicious 57053 84903 2738 236 21218 1168
bookmarks DNF DNF 4039 15990 DNF 53737
corel5k 25 31 1 45 14 9
mediamill 6152 6125 1 477 6079 398
bibtex 654 661 7 64 155 84
delicious 2045 1872 19 55 816 189
bookmarks DNF DNF 21 4084 DNF 4189T
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Overall, the results show that ML-SVMDT outperforms HOMER and ML-
C4.5 on all five datasets in terms of the five evaluation measures. The difference
in the predictive performances between ML-SVMDT and HOMER is more ev-
ident for the larger datasets (bibtex and delicious). Compared to the BR, CC
and the ML-kNN methods, ML-SVMDT shows better performance in terms of
the ranking based measure for all datasets, except for the bibtex dataset where
BR and CC show slightly better results. For the example and label based mea-
sures the proposed method outperforms BR, CC and ML-kNN for the delicious
dataset and shows comparable performance for the corel5k, mediamill and bibtex
datasets.

The results in terms of training and testing speed show that the proposed
method is 2 to 20 times faster in the training phase and 1.4 to 10 times faster
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in the testing phase than the HOMER method. The computational efficiency of
ML-SVMDT is even higher compared to the BR and CC methods (5 to 35 times
in the training phase and 3 to 25 times in the testing phase). ML-kNN is the
fastest in the training phase for the mediamill, bibtex and delicious datasets,
while ML-C4.5 shows the best training time for the bookmarks dataset. The
proposed architecture also shows higher computational efficiency than the ML-
C4.5 method in the training phase for the datasets with a larger number of
labels (corel5k and delicious) as a result of the post-pruning method used in
the ML-C4.5 algorithm that gives additional computational complexity. ML-
SVMDT uses only the minimal number of examples in the leaves of the tree as
a pre-pruning method that controls the size of the tree: After a node reaches
the minimal number of examples, no further branching of the decision tree is
allowed. On the other hand, ML-C4.5 is faster than ML-SVMDT in the training
phase for the other three datasets (mediamill, bibtex and bookmarks) and it is
the fastest in the testing phase for all datasets.

In the case of the bookmarks dataset, only the ML-C4.5, ML-kNN and the
ML-SVMDT methods perform satisfactorily under the experiment setup. The
other methods suffer problem of higher computational complexity. Bookmarks
dataset is much larger than those typically approached in the literature. On
this dataset, ML-SVMDT shows the best predictive performance and the overall
advantage in time costs compared to the other methods.

The dependence of the predictive performance and the training and testing
times of the proposed architecture on different values of the minimal number
of examples in the leaves graphically are shown on Figures 3(a) and 3(b), for
each dataset separately. It should be noticed that the predictive performance of
the proposed architecture strongly depends on this parameter. Overall, the best
predictive performance were obtained when the minimal number of examples in
leaves was set to 70. For the bookmarks dataset, some predictive performance
further improved when the minimal number of examples in leaves rose to 80 as
a result of the larger number of examples in the dataset compared to the other
datasets. On Figure 2, the dependence of the average number of labels per local
model (avg. # labels) and the number of local models (# local models) generated
in the ML-SVMDT architecture on the minimal number of examples in the leaves
are shown graphically for each dataset. These two parameters are closely related
to the number of examples in the leaves: By increasing the minimal number of
examples in the leaves, the average number of labels per local model increases,
while the number of local models generated by ML-SVMDT decreases.

5 Conclusions

We propose a novel hybrid architecture that integrates Decision Trees and SVMs
for computationally efficient multi-label classification. The architecture combines
the algorithm adaptation method ML-C4.5 and the problem transformation
method Binary Relevance: The latter uses SVMs as base classifiers for solving
the binary classification problems.
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Fig. 2. The average number of labels per local model and the number of local models
of ML-SVMDT as functions of the number of the minimal number of examples in the
leaves.

The proposed architecture is compared to the BR method, CC, ML-C4.5,
ML-kNN and the HOMER method on five different real-world datasets. Among
the six competing methods, ML-C4.5 is the fastest one in the prediction phase.
ML-kNN shows lower computational complexity in the training and slightly
higher computational complexity in the prediction phase compared to the ML-
C4.5 method, but, it is better in terms of the predictive performance. ML-
SVMDT shows slightly higher training times and comparable, but slightly smaller
testing times than ML-kNN, while showing better predictive performance in
terms of the example and ranking based evaluation measures. In terms of the
label based measures ML-SVMDT outperforms the ML-kNN method for the
two largest datasets (delicious and bookmarks) and corel5k (the second dataset
ordered by label dimensionality) and shows comparable results for the other two
datasets. Compared to the BR and CC methods, it shows slightly better predic-
tive performance but significantly higher computational efficiency. ML-SVMDT
also clearly outperforms the HOMER method in both predictive performance
and speed. Despite other methods, ML-SVMDT can achieve better predictive
performance and is efficient enough to scale up to very large problems.



ML-SVMDT 11

References

1. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

2. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In:
Proc. of the 5th European Conference on PKDD. pp. 42–53 (2001)

3. Dong, G.M., Chen, J.: Study on support vector machine based decision tree and
application. In: Proc. of the 5th International Conference on Fuzzy Systems and
Knowledge Discovery. pp. 318–322 (2008)

4. Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D.: Object recognition as machine
translation: Learning a lexicon for a fixed image vocabulary. In: Proc. of the 7th
European Conference on Computer Vision. pp. 349–354 (2002)

5. Gama, J.: Functional trees. Machine Learning 55, 219–250 (2004)
6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

weka data mining software: an update. SIGKDD Explorations 11, 10–18 (2009)
7. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel Text Classification for Auto-

mated Tag Suggestion. In: Proc. of the ECML/PKDD Discovery Challenge (2008)
8. Kumar, A.M., Gopal, M.: A hybrid svm based decision tree. Pattern Recognition

43, 3977–3987 (2010)
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Fig. 3. (a) The training and testing times and (b) the predictive performance of ML-
SVMDT as functions of the number of the minimal number of examples in the leaves..


