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ABSTRACT 
 

This article presents a new algorithm for 
combinatorial optimization based on the basic Tabu 
Search scheme named Adaptive Tabu Search (A-TS). 
The A-TS introduces a new, complex function for 
evaluation of moves. The new evaluation function 
incorporates both the aspiration criteria and the long-
term memory. A-TS also introduces a new decision 
making mechanism, providing means for avoiding 
possible infinite loops. The performance of A-TS was 
measured by applying it to the Quadratic Assignment 
Problem. The experimental results are compared to 
published results from other authors. The data shows 
that A-TS performs favorably against other established 
techniques.  

 
1  INTRODUCTION 
 

Heuristic search algorithms have proven to be very useful 
in solving difficult combinatorial optimization problems. 
Due to their ability to escape local optima, most successful 
heuristic local search techniques are Simulated Annealing, 
Genetic Algorithms, and Tabu Search with its variations. 
Tabu Search has been very successful in achieving near-
optimal (and sometimes optimal) solutions to a variety of 
hard problems.  
This paper introduces the Adaptive Tabu Search (A-TS), an 
improved tabu search algorithm for combinatorial 
optimization. Adaptive Tabu Search introduces a new 
evaluation function to the basic scheme of Tabu Search. 
Our Tabu scheme also proposes a new mechanism for 
selecting the best move. The selection process uses the 
evaluation function which incorporates both long-term 
memory and aspiration criteria.  
The performance of our A-TS is evaluated by using 
instances of the Quadratic Assignment Problem (QAP), 
chosen from the QAP Library (QAPLIB) [3]. By solving 
the same problem instances of QAP used by other cited 
researchers [2][4][5][14], we aimed to derive objective 
conclusions of the advantages of our Adaptive Tabu 
Search.  
Section 2 presents a formal definition of the QAP. Section 
3 provides a brief overview of the basic Tabu Search 

algorithm and its popular variations. In section 4 we 
describe the main improvements that we propose to the 
basic TS algorithm, resulting in our Adaptive Tabu Search 
(A-TS) algorithm. The environment used to test A-TS is 
described in section 5. Section 6 presents the experimental 
results. Our conclusions and areas of further research are 
given in section 7. 
 
2  THE QUADRATIC ASSIGNMENT PROBLEM 
 

The Quadratic Assignment Problem (QAP) is NP-hard 
combinatorial optimization problem [13]. Its many 
practical instances come from areas such as design and 
resource allocation, microprocessor design and scheduling. 
Due to the complexity of QAP, in some ways, it has 
become a benchmark by which new techniques are 
validated.  
For the first time, QAP is stated by Koopmans and 
Beckman in 1957 [11]. It can be described as follows: 
Given two n × n matrices A=(aij) and B=(bij), find a 
permutation π* minimizing 
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where П(n) is the set of permutations of n elements. In 
other words, it deals with identifying optimal assignments 
of facilities to locations such that the cost of the resulting 
system is minimized. Shani and Gonzalez [13] have shown 
that the problem is NP-hard and that there is no e-
approximation algorithm for the QAP unless P = NP. 
In practice, a large number of real world problems lead to 
QAP instances of considerable size, that cannot be solved 
exactly. For example, an application in image processing 
requires solving more than 100 QAP problems of size n = 
256 [15]. Even with today’s fastest computers, relatively 
small problems require prohibitive amounts of time to 
solve to provable optimality [1]. The use of heuristic 
methods for solving large QAP instances is currently the 
only practicable solution.  
 
3  TABU SEARCH OVERVIEW 
 

Glover introduced Tabu Search (TS) in the late 80’s [6]. 
The basic idea behind TS is that, adding short-term 
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memory to local search, improves its ability to locate 
optimal solutions. Revisiting previously or recently visited 
solutions is discouraged, and operations that would do so 
are labeled as being “tabu” or “taboo”. Glover proposed the 
use of both statically and dynamically sized memory 
structures for tracking tabu operations. In 1991 Taillard 
created the Robust Tabu Search (RO-TS) [14], which 
introduced a dynamic randomly-sized short-term memory 
design. Battiti and Tecchiolli developed the RE-TS [2] in 
1994. They introduced a dynamically sized short-term 
memory, dependent on the runtime characteristics of the 
algorithm. Also, they utilized a form of long-term memory 
that helped prevent searches from stagnating. 
Many other TS variations have been developed that 
incorporate various forms of dynamically-sized short-term 
memory and long-term memory [9][10]. Still, the RO-TS 
and RE-TS remain among the most successful and popular. 
The following concepts are common to most (if not all) 
Tabu Search techniques, but their specific implementations 
are somewhat flexible.  
A move m is an operation by which one solution is 
transformed into a new, neighboring solution. The 
neighborhood of the solution, N(i,k), is the set of all 
solutions that can be derived from the given solution i, at 
iteration k, by applying a valid move. For the QAP, a 
common move strategy consists of swapping facilities 
assigned to two locations. 
The Tabu List implements the short-term memory. It is the 
most influential piece of any TS design. The basic purpose 
of the list is to maintain a record of moves that are tabu 
(discouraged) during a number of following iterations. 
Usually, a move added to the Tabu List is the reciprocal of 
the move last accepted and applied to the current solution. 
The reciprocal is recorded in order to prevent the search 
from “undoing” recent moves.  
During a TS run, it is possible that a single solution will be 
visited multiple times. To some degree, this behavior is 
desirable - it supports the concepts of exploitation and 
exploration. On repeated visits of a solution, the Tabu List 
will most likely contain a different set of tabu moves, and 
the search may travel a new path. However, the problem 
arises when the algorithm continuously revisits the same set 
of solutions repeatedly (infinite loop), leaving large areas of 
the search space unexplored. Increasing the length of the 
list, decreases the probability of entering an infinite loop. 
On the other hand, longer lists limit the exploration of the 
search space. The so called long-term memory has a great 
deal in solving this problem. 
When selecting the next move to perform, TS evaluates the 
neighborhood of the current solution and attempts to find 
the best non-tabu move; “best” being determined as the 
objective value of the resulting solution, should the move 
be applied. Sometimes, however, it may be desirable to 
allow a tabu move to be chosen. The conditions under 
which a tabu move would be allowed are known as the 
aspiration criteria. The most common aspiration criteria is 
to test whether the implementation of the tabu move would 

result in the best-fit solution yet found, for the current run. 
The above criteria is used by Battiti and Tecchiolli in the 
RE-TS. Figure 1 shows the basic elements of TS.  
 

Step 1. Create an initial solution i at random. Set 
i*=i and k=0. 

Step 2. Set k=k+1 and generate a subset V* of 
solutions in N(i,k) such that either one of the 
tabu conditions tr(i,m)∈Tr is violated 
(r=1,...,t) or at least one of the aspiration 
conditions ar(i,m)∈Ar(i,m) holds (r=1,...,a). 

Step 3. Choose a best j=i⊕m in V* (with respect to 
objective function f) and set i=j. 

Step 4. If f(i) < f(i*) then set i*=i. 
Step 5. Update tabu and aspiration conditions. 
Step 6. If a stopping condition is met then stop. Else 

go to Step 2. 
 

Figure 1: Tabu Search pseudo code. 
 
4  THE ADAPTIVE TABU SEARCH 
 

The Adaptive Tabu Search, that we propose, explores the 
meaning of finding the “best” move. The search for the 
best move is a very computation demanding operation. 
Therefore, it plays a major part in the speed and accuracy 
of the solving process. The local search in TS consists of 
evaluating all moves applicable to the current solution, and 
choosing the best one. In the A-TS approach, the non-tabu 
move that generates the greatest improvement of the 
objective function is chosen and applied. In this case, no 
aspiration criteria are being utilized. However, in some 
instances, none of the evaluated non-tabu moves provides 
any improvement. The proposed evaluation function is 
triggered only when all evaluated moves are tabu or non-
improving, non-tabu. The move for which the evaluation 
function returns the lowest value is accepted and 
performed. 
Any implementation of TS must provide a balance 
between exploring and exploiting the search space. The 
risk of visiting certain solutions infinite number of times 
must be avoided. On the other hand, the potential benefit 
from revisiting a single solution has to be encouraged. The 
aim of A-TS is to achieve this balance and maintain it 
throughout the whole search. 
The evaluation function makes its decisions considering 
the long-term memory and the remaining time (iterations) 
for the move as tabu (tabu_time_left). The long-term 
memory is implemented as a list of counters, remembering 
the application of each possible move during the search. In 
the evaluation function, the number of occurrences of the 
move (frequency) is multiplied with an adaptive coefficient 
(k1). The value of k1 is proportional to the value of the 
move itself, the frequency of the application of the move 
and the current iteration. The main objective of the 
adaptive coefficient is to prevent the search from getting 
caught in an infinite loop. 
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On the other hand, the function includes an aspiration 
criterion. It allows a tabu move to be performed, if it seems 
promising and not risky in terms of loops or local 
stagnation. The criterion is implemented using another 
adaptive coefficient (k2), whose value also changes and is 
proportional to the value of the move. The adaptive nature 
of our Tabu Search scheme is based on these two adaptive 
coefficients. The final form of the evaluation function is: 
 

evaluation_ func (move_value, frequency, tabu_time_left)= 
 move_value + k1 * frequency + k2 * tabu_time_left 
where: 
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The coefficients k1 and k2 control the influence of the move 
frequency and the remaining time of the move in the tabu 
list. The coefficients c1, c2 and c3 are tuned up 
experimentally, according to the specific problem being 
solved. Their influence upon the accuracy of the obtained 
solutions is considerable. However, they have no 
significant influence on the number of iteration required to 
reach the optimal solution. The values for c1, c2 and c3 used 
here are 10, 0.01 and 0.01 respectively.   
 
5  BENCHMARK INSTANCES 
 

The problem instances used in the development and testing 
of A-TS were obtained from the QAPLIB, a public library 
of QAP problems and their best-known solutions [3]. The 
number in the problem’s name corresponds to the size of 
the problem. QAPLIB currently contains over 100 
instances that have been used in earlier researches. Some of 
them originate from real life applications, like hospital 
layout (kra30*, els19), typewriter design (bur26*), etc. 
As shown by Taillard [15], the quality of solutions 
produced by heuristic methods strongly depends on the 
problem type. For problems taken from the real world, 
many heuristic methods perform rather poorly. They are not 
able to find solutions within 10% of the value of the best 
solutions known, even if excessive computing time is 
allowed. Conversely, the same methods may perform very 
well on randomly generated problems. For such problems, 
almost all heuristic methods are able to find high quality 
solutions (i.e., solutions approximately one percent worse 
than the best solution known). Therefore, it is reasonable to 
analyze the performance of A-TS by splitting the problem 
instances into two categories: (i) real world, irregular and 
structured problems, and (ii) randomly generated, regular 
and unstructured problems. 
 
6  EXPERIMENTAL RESULTS 
 

A-TS is compared with a set of the best heuristic methods 
available for the QAP, such as the genetic hybrid method of 
Fleurent and Ferland [5] (GH), the reactive tabu search of 

Battiti and Tecchiolli [2] (RE-TS), the tabu search of 
Taillard [14] (RO-TS) and a simulated annealing from 
Connolly [4] (SA). In the comparison, a large subset of 
well known problem instances is considered, with sizes 
between n = 12 and n = 35, contained in the QAPLIB. 
The complexity of one iteration, for each algorithm 
considered, varies: SA has the lower complexity with O(n) 
per iteration. RO-TS and RE-TS have a complexity of 
O(n2) per iteration, GH has a complexity of O(n3), while 
A-TS has a complexity of O(n(n-1)/2) ≈ O(n2).  
In order to make fair comparisons between these 
algorithms, the same computational time was given to each 
test problem trial, by performing a number of iterations 
equal to nImax(62.5n – 5) for A-TS, to 10nImax [12] for RE-
TS and RO-TS, 125n2Imax [12] for SA and 2.5Imax [12] for 
GH.  
Tests are performed with Imax=10. The experiments 
evaluate their ability in producing relatively good solutions 
under strong time constraints.  
 

Problem 
name 

Best known 
value RO-TS RE-TS SA GH A-TS 

Els19 17212548 21.261 6.714 16.028 0.515 10.0914

Tai20b 122455319 0  — 6.7298 0 1.4522
Tai25b 344355646 0.0072 — 1.1215 0 0.0559
Tai30b 637117113 0.0547 — 4.4075 0.0003 1.7026
Tai35b 283315445 0.1777 — 3.1746 0.1067 1.1849
Kra30a 88900  0.4702 2.0079 1.4657 0.1338 0.0267
Kra30b 91420  0.0591 0.7121 0.1947 0.0536 0 
Chr25a 3796  6.9652 9.8894 12.4973 2.6923 0 

 

Table 1: Quality of various heuristic methods for irregular 
problems, measured in percent above the best solution 
value known. Best results are in boldface. 
 
Table 1 compares all mentioned methods on real life, 
irregular and structured problems opposed to A-TS. In 
particular, the average quality of the solutions produced by 
these methods is shown, measured in percent above the 
best solution value known. The RE-TS, S-TS, and RO-TS 
data contained in table 1 and 2, was gathered from L. M. 
Gambardella, É. D. Taillard and M. Dorigo [12]. The 
results of the mentioned authors are averaged over 10 runs, 
while the results of A-TS are averaged over 100 runs. 
Table 1 shows that methods like RE-TS or SA are not well 
adapted for irregular problems. Sometimes, they produce 
solutions over 10% worse than the best solutions known. 
Other heuristic methods are able to exhibit solutions at less 
than 1% of the optimum value, with the same computing 
effort. For problem types tai*b, GH seems to be the best 
method overall. Our approach produces solutions with 
average deviation smaller than 1% in most of the cases. 
Table 2 provides the same type of comparisons as those of 
table 1, only for unstructured problems. Table 2 shows that 
our technique outperforms all of the other techniques, for 
all of the listed problems. In half of the cases, our results 
achieve the exact best solutions in all 100 trials, whereas in 
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the rest, the average gap (deviation from the optimal) is 
below 1%. 
 
Problem 

name 

Best 
known 
value 

RO-TS RE-TS SA GH A-TS 

Nug20 2570 0.101 0.911 0.327 0.047 0 
Nug30 6124 0.271 0.872 0.500 0.249 0 
Tai20a 703482 0.769 0.705 1.209 0.732 0.046 
Tai25a 1167256 1.128  0.892 1.766 1.371 0.736 
Tai30a 1818146 0.871  1.044 1.434 1.160 0 
Tai35a 2422002 1.356  1.192 1.886 1.455 0.014 

 

Table 2: Quality of various heuristic methods for regular 
problems measured in percent above the best solution value 
known. Best results are in boldface.  
 
Additional comparison of the algorithms, based on the 
number of iterations needed to achieve the optimal solution, 
was performed. A series of runs performed with the A-TS 
were compared with published results of the metaheuristic 
search techniques RE-TS and RO-TS. Table 3 shows 
comparisons over some of the problems from the Taillard 
set, ranging in sizes from 12 to 35. 100 runs were 
performed on each problem by A-TS, opposed to 30 runs 
performed by the authors of the other approaches. The RE-
TS, and RO-TS data contained in this table was gathered 
from Battiti and Tecchiolli [2]. The best result in each row 
is bolded. 
 

Problem 
Max.Iter 

A-
TS/Others 

RE-TS RO-TS 
A-TS 
Avg. 
Iter. 

Tai12a 10K/100K 282.3 210.7 165.7 
Tai15a 10K/100K 1780.3 2168.0 2145.5 
Tai17a 100K/100K 4133.9 5020.4 4363.9 
Tai20a 100K/500K 37593.2 34279 31650.8 
Tai25a 400K/1M 38989.7  80280.4 19945 
Tai30a 560K/2M 68178.2 146315.7 104084.2 
Tai35a 760K/4M 281334.0  448514.5 290458.1 

 

Table 3: Comparison of average iterations before 
convergence to best solution for RE-TS, RO-TS, and A-TS. 
 
7  CONCLUSION 
 

This paper describes a novel approach to the Tabu search 
scheme. We propose a new decision making mechanism 
with a new evaluation function to integrate within the 
standard TS. The resulting Adaptive Tabu Search (A-TS) 
augments the exploration and exploitation of the search 
space, through the incorporation of long-term memory, 
aspiration criteria and the value of the move in a single 
evaluation function. By using search history, the adaptive 
coeficients within the combined evaluation function 
provide useful feedback to the process. 
Instances of the Quadratic Assignment problem were used 
for quantitative evaluation of the algorithm. Experimental 
results show that A-TS performs favorably. In some cases, 
the optimal result was found in less iteration than other 

techniques. For most of the problems, especially regular 
problem instances, A-TS seems to be the best choice.  
Based on the encouraging results, further research of A-TS 
will be performed. Its implementation to more complex, 
real life problems, will provide more details of the 
algorithm quality and advantages.  
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