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Multi-label learning (MLL) problems abound in many areas, including text categoriza-

tion, protein function classification, and semantic annotation of multimedia. An issues
that severely limits the applicability of many current machine learning approaches to

MLL are the large-scale problem, which have a strong impact on the computational

complexity of learning. These problems are especially pronounced for approaches that
transform MLL problems into a set of binary classification problems for which SVMs

are used. On the other hand, the most efficient approaches to MLL, based on decision

trees, have clearly lower predictive performance. We propose a hybrid decision tree archi-
tecture, where the leaves do not give multi-label predictions directly, but rather utilize

local SVM-based classifiers giving multi-label predictions. A binary relevance architec-
ture is employed in the leaves, where a binary SVM classifier is built for each of the

labels relevant to that particular leaf. We use a broad range of multi-label datasets with

a variety of evaluation measures to evaluate the proposed method against related and
state-of-the-art methods, both in terms of predictive performance and time complexity.
Our hybrid architecture on almost every large classification problem outperforms the

competing approaches in terms of the predictive performance, while its computational
efficiency is significantly improved as a result of the integrated decision tree.

Keywords: multi-label; learning; hybrid; architecture; decision tree; SVM.

1. Introduction

Single-label classification is concerned with learning from examples, each associated

with a single label λi from a finite set of disjoint labels L = {λ1, λ2, ..., λQ}, |L| > 1.

The task is to learn a mapping l: X → L (where X denotes the example space)

that assigns a single label to each example. For |L| > 2, the task is referred to as a

1
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multi-class classification.

In multi-label classification (MLC), the task is to learn a mapping h: X → 2L.

Each example x ∈ X is associated to a set of labels Y ⊆ L. In contrast to multi-class

classification, the labels are not assumed to be mutually exclusive, i.e., an example

can be a member of more than one class. The labels in Y are called relevant and

those in L\Y irrelevant for a given example.

Label ranking studies the problem of learning a mapping from a set of exam-

ples to rankings over a finite number of predefined labels. It can be considered a

natural generalization of conventional (multi-class) classification, where instead of

requesting only a single label (a top label), a ranking of all the labels is performed.

Besides the concept of multi-label classification, the multi-label learning con-

cept includes the concept of multi-label ranking 1, which is understood as learning

a model that associates the query example x both with a label ranking of the com-

plete label set {λ1, λ2, ..., λQ} and a bipartite partition of this set into relevant and

irrelevant labels.

The issue of learning from multi-label data has recently attracted significant

attention from many researchers. They are motivated from an increasing number

of new applications, such as semantic annotation of images and video (news clips,

movies clips), functional genomics (gene and protein function), music categoriza-

tion into emotions, text classification (news articles, web pages, patents, emails,

bookmarks, ...), directed marketing and others.

In recent years, many different approaches have been developed to solve the

multi-label learning problems. Tsoumakas and Katakis 2 summarize them into two

main categories: a) algorithm adaptation methods, and b) problem transformation

methods. Algorithm adaptation methods extend specific learning algorithms to han-

dle multi-label data directly. Examples include lazy learning 3 4 5, neural networks
6 7, boosting 8 9, classification rules 10, decision trees 11 12 etc. Problem transfor-

mation methods, on the other hand, transform the multi-label learning problem

into one or more single-label classification problems. The single-label classification

problems are solved with a commonly used single-label classification approach and

the output is transformed back into a multi-label representation via some reverse

process. A common approach for problem transformation is to use class binariza-

tion methods, i.e. decomposition of the problem into several binary sub-problems

that can then be solved using a binary base classifier. The simplest strategies in

the multi-label setting are the one-against-all and one-against-one strategies, also

referred to as the binary relevance method (BR) 2 and pair-wise method 13 14

respectively.

Two major classes of algorithms for multi-label learning are decision-tree-based

and SVM-based approaches. Algorithms from the first group are extremely effi-

cient, but not very accurate. Algorithms from the second group, represented by the

problem transformation SVM architectures 2 are very accurate, but can be compu-

tationally expensive, especially in large-scale problems and when labels abound.

In this paper, we propose a novel architecture that combines the ML-C4.5 deci-
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sion tree 11 and the BR architecture (that uses SVMs as base classifiers for solving

the partial binary classification problems). In this way we achieve effective and

computationally efficient multi-label learning on large-scale problems with a large

number of labels. This approach will be referred to as SVM-based decision trees for

multi-label learning (ML-SVMDT).

Section 2 surveys previous related work in multi-label learning and highlights the

problems of high dimensionality of the label space and large size of the datasets. The

architecture that we propose as an effective and computationally efficient solution to

these two problems is presented in Section 3. Section 4 presents the experimental

setup and performance evaluation measures, while the experimental results that

compare the performance of our architecture to the other competing methods are

presented in Section 5. The conclusions are given in Section 6, along with some

directions for further work.

2. Related work

In this section, we will give an overview of different methods for solving multi-label

learning problems. These methods can be summarized in three main categories: Al-

gorithm adaptation methods, problem transformation methods and ensemble meth-

ods. Additionally, the problem transformation methods can be grouped in three

subcategories: Binary relevance methods, label power-set methods and pair-wise

methods.

2.1. Algorithm adaptation methods

ML-C4.5 is an adaptation of the well known C4.5 algorithm for multi-label learning
11. Clare et al. modified the formula of entropy calculation (equation 1) in order to

solve multi-label problems. They also allowed multiple labels in the leaves of the

tree. The modified entropy sums the entropies for each individual class label.

E(S) = −
N∑
i=1

(p(ci) log p(ci) + q(ci) log q(ci)) (1)

where S is the set of examples, p(ci) is the relative frequency of class label ci and

q(ci) = 1 − p(ci). Each leaf is represented by the most frequent set of class labels

that are associated to the training examples that belong to that leaf. If more than

50% of the training examples in the leaf are labeled with a particular label then

that label belongs to the set of most frequent labels. The key property of ML-C4.5

is its computational efficiency. It is among the fastest and most computationally

efficient multi-label classifiers available today.

Zhang et al. 15 proposed an adaptation of Random Decision Tree (RDT) for

multi-label classification. The main difference between RDT and other classical

decision tree methods, such as ML-C4.5, is that RDT constructs the decision tree

randomly without using any information for labels.
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Predictive clustering trees (PCTs) 12 are decision trees viewed as a hierarchy

of clusters: the top-node corresponds to one cluster containing all data, which is

recursively partitioned into smaller clusters while moving down the tree. PCTs

are constructed using a standard top-down induction of decision trees algorithm,

where the variance and the prototype function can be instantiated according to the

task at hand. Namely, PCTs can handle several types of structured outputs: tuples

of continuous or discrete variables, time series, classes organized into a hierarchy,

tuples of time series and tuples of hierarchies 16. For the task of predicting tuples

of discrete variables, the variance function is computed as the sum of the Gini

indices of the variables from the target tuple, i.e., Var(E) =
∑T
i=1 Gini(E ,Yi).

The prototype function returns a vector of probabilities that an example belongs

to a given class for each variable from the target tuple. In the case of multi-label

learning, it returns a vector of probabilities that an example is labelled with a given

label.

ML-kNN 3 is based on the popular k Nearest Neighbours (kNN) lazy learning

algorithm. The first step in this approach is the same as in kNN, i.e., retrieving the k

nearest examples. It uses the maximum a posteriori principle in order to determine

the label set of the test example, based on prior and posterior probabilities i.e.

the frequency of each label within the k nearest neighbours. Other kNN based

approaches for multi-label learning also exist 17 4 5.

Neural networks have also been adapted for multi-label classification 6 7. BP-

MLL 7 is an adaptation of the popular back-propagation algorithm for multi-label

learning. The main modification to the algorithm is the introduction of a new error

function that takes multiple labels into account.

2.2. Problem transformation methods

2.2.1. Binary relevance methods

An extensive bibliography of learning algorithms for problem transformation meth-

ods is given by Tsoumakas and Katakis 2. The simplest strategy in the multi-label

setting is the one-against-all strategy also referred to as the binary relevance method

(BR) 2. It addresses the multi-label learning problem by learning one classifier for

each class, using all the examples labelled with that class as positive examples and

all remaining examples as negative examples. At query time, each binary classifier

predicts whether its class is relevant for the query example or not, resulting in a set

of relevant labels. In the ranking scenario, the labels are ordered according to the

probability association of each label from each binary classifier. The most important

and widely relevant advantage of BR is its low computational complexity compared

to other methods. It is theoretically simple and intuitive. Its assumption of label

independence makes it suited to contexts where new examples may not necessarily

be relevant to any known labels or where label relationships may change over the

test data. Given a constant number of examples, BR scales linearly with the size of

the known label set Q. A method closely related to the BR method is the Classifier



October 17, 2013 15:0 WSPC/INSTRUCTION FILE MLSVMDT

Hybrid Decision Tree Architecture utilizing Local SVMs for Efficient Multi-Label Learning 5

Chain method (CC) proposed by Read et al. 18. This method involves Q binary

classifiers as in BR. Classifiers are linked along a chain where each classifier deals

with the binary relevance problem associated with label λi ∈ L, (1 ≤ i ≤ Q). The

feature space of each link in the chain is extended with the 0/1 label associations of

all previous links. The ranking and the prediction of the relevant labels in the CC

method are the same as in the BR method. Xu 19 propose one more BR method that

extends the traditional binary support vector machine for multi-label classification.

2.2.2. Label power-set methods

The second problem transformation method is the label combination method, or

label power-set method, (LP), which has been the focus of several recent studies
20 21 2. The basis of this method is to combine entire label sets into atomic (sin-

gle) labels to form a single-label problem for which the set of possible single labels

represents all distinct label subsets in the original multi-label representation. Each

(x,Y) is transformed into (x, l) where l is the atomic label representing a distinct

label subset. In this way, LP based methods directly take into account label cor-

relations. To solve the problem of the large number of label combinations, Read
22 developed a pruned problem transformation method (PPT), that selects only

the transformed labels that occur more than predefined number of times. Tai et al.
23 proposed a novel method, Principle Label Space Transformation, that captures

the important correlations between labels using a flat (a low-dimensional linear

subspace) in the high-dimensional space. The method only uses a simple linear en-

coding of the vertices and a simple linear decoding of the reduced predictions, both

easily computed from the Singular Value Decomposition of a matrix composed of

the label-set vertices.

2.2.3. Pair-wise methods

Third problem transformation approach to solving the multi-label learning prob-

lem by using binary classifiers is pair-wise classification or round robin classification
13 14. Its basic idea is to use Q ∗ (Q − 1)/2 classifiers covering all pairs of labels.

Each classifier is trained using the samples annotated with the first label as pos-

itive examples and the samples annotated with the second as negative examples.

The sample annotated with both labels cannot be viewed as either a positive or

a negative example, and because of that it is not involved in the learning process

of the corresponding model. To combine these classifiers, the pairwise classification

method naturally adopts the majority voting algorithm. Given a test example, each

classifier delivers a prediction for one of the two labels. This prediction is decoded

into a vote for one of the labels. After the evaluation of all Q ∗ (Q− 1)/2 classifiers,

the labels are ordered according to their sum of votes. To predict the relevant and

irrelevant labels for each example a thresholding method is used. The labels that

accumulated votes above the chosen threshold are considered relevant and the rest
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of the label are considered irrelevant for the corresponding test example.

Brinker et al. 1 and Fürnkranz et al. 24 propose a conceptually new technique

for extending the common pair-wise learning approach to the multi-label scenario

named Calibrated Label Ranking (CLR). The key idea of calibrated label ranking is

to introduce an artificial (calibration) label λ0, which will represent the split-point

between relevant and irrelevant labels. The calibration label λ0 is assumed to be

preferred over all irrelevant labels, but all relevant labels are preferred over it. At

prediction time (when majority voting is usually used), one will get a ranking over

Q+ 1 labels (the Q original labels plus the calibration label λ0). CLR is considered

a combination of multi-label classification and ranking.

Besides majority voting in CLR, Park et al. 25 propose another, more effective

voting algorithm named Quick Weighted Voting (QWeighted) for multi-class classi-

fication. QWeighted computes the class with the highest accumulated voting mass,

while avoiding the evaluation of all possible pairwise classifiers. An adaptation of

QWeighted to multi-label learning (QWeightedML) 26 is to repeat the process while

all relevant labels are not determined, i.e., until the returned label is the artificial

label λ0, which means that all remaining labels will be considered to be irrelevant.

Madjarov et al. 27 propose a novel architecture for efficient pair-wise multi-label

learning, named Two Stage Architecture. The authors achieved a significant re-

duction in the computational complexity int the prediction pahse by introducing a

threshold that dynamically affects the number of consulted pair-wise classifiers.

2.3. Ensemble methods

Several ensemble approaches have been developed based on the common algo-

rithm adaptation and problem transformation methods. AdaBoost.MH and Ad-

aBoost.MR 8 are two extensions of AdaBoost for multi-label data. While Ad-

aBoost.MH is designed to minimize Hamming loss, AdaBoost.MR is designed to

find a hypothesis which places the correct labels at the top of the ranking. A combi-

nation of AdaBoost.MH with an algorithm for producing alternating decision trees
9 has been proposed, with the motivation of producing multi-label models that can

be understood by humans.

Problem transformation ensembles are the RAKEL system by Tsoumakas et

al. 20 and ensembles of classifier chains (ECC) 28. For m iterations of the training

data, RAKEL draws a random subset of size k from all labels L and trains a label

power-set classifier using these labels. A simple voting process determines the final

classification set. Note that binary methods are occasionally referred to as ensem-

ble methods because they involve multiple binary models. Li et al. 29 introduce a

novel multi-label classification framework called Variable Pairwise Constraint pro-

jection for Multi-label Ensemble (VPCME) to construct a multi-label ensemble for

handling multi-label data. This framework involves two inherent components, i.e.,

the variable pairwise constraint projection and the boosting-like strategy. However,

none of these models is multi-label itself and therefore we use the term ensemble
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strictly in the sense of an ensemble of multi-label methods. Kong et al. 30 proposed

method for multi-label stream classification based on an ensemble of fading random

trees, that can efficiently process high-speed multi-label stream data with concept

drifts.

2.4. Other methods related to multi-label learning

Multi-task learning 31 32 33 and structured output prediction learning are domains

closely related to the concept of multi-label learning. Multi-task learning studies the

problem of learning data representations that are common across multiple related

supervised learning tasks. It exploit the relations between tasks (classes) to enhance

the performance of learning algorithms by simultaneously learning classifiers for

multiple tasks.

Structured output prediction is a machine learning and regression technique that

involve predicting structured objects 34 35 36 12 16 37. For example, the problem

of translating a natural language sentence into a semantic representation such as a

parse tree can be seen as a structured prediction problem in which the structured

output domain is the set of all possible parse trees. Structured prediction generalizes

supervised learning where the output domain is usually a small or simple set. A

tree based method for structured output prediction using a kernelization of the

algorithm is proposed by Guerts et. al 37.

Freng et al. 38 formalize the framework for applying Error-correcting Codes on

multi-label classification. They studied the use of four classic Error-correcting Codes

designs: repetition code, Hamming code, BCH code and low-density parity-check

code.

2.5. The problem of large datasets and large label spaces

Recently, one of the most challenging issues in multi-label learning is the high

dimensionality of the label space in the large-scale problems. Usually, this issue in-

cludes the problems of imbalance of the examples per certain labels in the datasets

and the small number of training examples annotated with a particular label. These

problems can significantly influence the computational complexity and the predic-

tive performance of the previously proposed methods for multi-label learning. Some

methods achieve higher computational efficiency at the cost of predictive accuracy,

such as ML-kNN 3, ML-C4.5 11, etc. These methods usually belong to the group of

algorithm adaptation methods. Other proposed methods, based on problem trans-

formation, use base classifiers with lower time complexity, such as Naive Bayes 39

21, the one-layer perceptron 26, etc., in order to reduce the computational complex-

ity. Most of the proposed methods that show good predictive performances on the

standard datasets (dataset that do not include the previously mentioned problems)

become unusable for these kind of problems.

Nasierding et al. 40 presents a novel multi-label classification framework for

domains with large number of labels. The proposed framework comprises an initial
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clustering phase that breaks the original training set into several disjoint clusters

of data. It then trains a multi-label classifier from the data of each cluster. Given

a new test instance, the framework first finds the nearest cluster and then applies

the corresponding model.

Another computationally efficient multi-label classification method specifically

designed for large multi-label datasets is HOMER 21. It constructs a hierarchy of

multi-label classifiers, each one dealing with a much smaller unique set of labels

compared to Q (the total number of labels) and a more balanced example distri-

bution. This leads to improved predictive performance and also to linear training

and logarithmic testing complexities with respect to Q. One of the main processes

within HOMER is the even distribution of a set of labels into k disjoint subsets

so that similar labels are placed together and dissimilar apart. The best predic-

tive performance is reported using a balanced k means algorithm customized for

HOMER.

2.6. Combining decision trees and SVMs

Several approaches that combine decision trees and SVMs have been proposed for

binary and multi-class classification. For example, Kumar et al. 41 propose a method

that combines decision trees and global SVM models (models learned on the whole

dataset) for solving binary classification problems. Other approaches, such as 42 43,

use the structure of the decision tree to organize/arrange SVM classifiers in its nodes

in order to improve the computational efficiency and the predictive performance.

Boosting ensemble of support vector machines for multi-class classification was

proposed in 44. Gama 45 proposed functional trees for multi-class classification and

regression problems. In each node of the functional tree a classifier or regressor is

learned depending on the type of the problem. The feature vectors of the examples

are extended with the predictions of the classifier or the regressor and the splitting

of the examples in the corresponding node can also be done by one of the ”new”

attributes. However, none of these approaches deal with MLC problems.

3. Integration of Decision Trees and local SVMs

In this paper, we propose a novel hybrid approach that integrates Decision Trees

and Support Vector Machines (ML-SVMDT) for computationally efficient multi-

label learning in domains with a large number of labels. This approach combines the

algorithm adaptation method ML-C4.5 11 and the problem transformation method

Binary Relevance (BR) 2: The latter uses SVMs as base classifiers for solving the

partial binary classification problems. The main idea of the proposed approach is

to exploit the advantages of both methods - the low computational complexity of

ML-C4.5 and the predictive accuracy of the BR architecture with SVM classifiers.
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3.1. Local models and ML-SVMDT

An approach to achieve effective and computationally efficient multi-label learning

is to partition the global classification problem first and then learn local classifiers

for each of those partitions (subproblems) separately. In the prediction phase, one

first tries to determine the partition to which a test example belongs, and then to

classify the example using a local classifier trained using the examples belonging

to that partition only. The logic behind this approach is that the examples that

belong to the same partition as the test example, would be able to provide more

accurate and faster prediction compared to the global classifier. We propose a novel

hybrid architecture that introduces local models based on support vector machine

classifiers for solving multi-label learning problems.

Our approach combines the ML-C4.5 method for partitioning the input feature

space and the BR method for local classification. The BR method uses SVMs as

base classifiers for solving the partial binary classification problems. The main idea

is to use the advantages of both methods in order to build an architecture that

will improve the predictive performance and the computational efficiency of its

constituents. This approach will be referred to as hybrid decision tree architecture

utilizing local SVMs for efficient multi-label learning (ML-SVMDT).

Throughout the literature, BR is often mentioned, but consistently criticized on

account of its assumption of label independence. Namely, during the transformation

process, BR ignores label correlations that exist in the training data. BR predicted

label sets are likely to contain either too many or too few labels, or labels that would

never co-occur in practice. In order to reduce these inconsistencies in the multi-label

prediction of the BR method, we employed the ML-C4.5 method. In this context,

the ML-C4.5 method actually tries to separate the training examples into groups

where the label inconsistency is eliminated. It finds the correlations between labels

and splits the global problem into several local subproblems accordingly.

The implementation of the architecture consists of three separate, sequential

phases.

(1) In the first phase, the decision tree is built according to the ML-C4.5 approach

(Figure 1).

(2) In the second phase, the decision tree is pruned (Figure 3).

(3) In the third phase, local SVM models are learned first; the architecture is then

built by integrating the decision tree and the local SVM models (Figure 4).

The procedure of building the hybrid decision tree utilizing local SVMs is outlined

on Figure 1.

We first introduce the notation used on Figures 1, 2, 3 and 4 and then analyse

each implementation phase separately. Strain represents the training dataset, while

Sval is the validation dataset used for pruning. f represents one dataset feature,

while g is the normalized information gain, calculated as the difference in entropy

between a given dataset and its splits made according to f . P is a partition induced
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by f on a particular dataset. g∗ is the largest information gain achieved by splitting

a given dataset according to the feature f∗, while P∗ is the corresponding partition

induced by f∗.

The procedure of building the decision tree according to the ML-C4.5 approach

(Figure 2) takes a set of examples (Strain) as input and outputs a tree. The building

process starts at the root of the tree with choosing one feature (f) of the data that

most effectively splits the dataset of examples into subsets (P). The criterion is the

normalized information gain (difference in entropy g) that results from choosing a

feature for splitting the data (line 6 of BestFeature procedure on Figure 1). The

feature with the highest normalized information gain is chosen to make the decision.

The process continues recursively in each node until one of the stopping criteria is

reached. The function Acceptable(P) determines if splitting the data in a node

using the feature f would violate any of the stopping criteria. In our approach

we use three separate stopping criteria: all examples in a node are labelled with

the same labels; no partitioning provides any information gain and the number of

samples in any of the child nodes after the split would be below some predetermined

minimal number of examples. The data in a node can be acceptably splitted if none

of the stopping criteria is satisfied. If no suitable feature can be found that can

still acceptably split the data, the process of splitting the dataset stops and the

corresponding node is declared as a leaf. Each leaf represents a set of labels that

is assigned to an example that reaches the leaf in the recognition phase. The set

of labels for each leaf is defined by the labelling of the majority of the training

examples that have reached the leaf as in ML-C4.5 11. In the ranking scenario, the

labels are ordered according to their frequency among the training examples in the

corresponding leaves.

Once a tree has been built, it is pruned back. The general algorithm to prune

the tree is presented on Figure 3. The tree is traversed using a bottom-up, post

order strategy. The pruning is conducted using a validation dataset (Sval). Each

sample of the validation dataset traverses the tree until it reaches a leaf, where it

is being labelled in the same way as in the ML-C4.5 approach. For each node, two

quantities are estimated using the validation dataset: leaf error and tree error. Leaf

error is an estimate of the error considering the node as a leaf. Tree error is defined

as a weighted sum of the estimates of the errors of all subtrees of the current node.

If the tree error is greater or equal than the leaf error, then the node is replaced by

a leaf (subtree replacement 46). The estimation of the error can be conducted using

any performance evaluation measure (for example, evaluation measures described

in section 4.1).

After pruning the tree, we try to solve the ”new” classification problems defined

on the examples in the leaves of the tree by using more accurate local models (Figure

4). This means that in each leaf of the decision tree one local model is learned with

the examples from the corresponding leaf by the BR method, using SVMs as base

classifiers for solving the partial binary classification problems. After the procedure

of learning the local SVM models, the error of each local model is estimated by
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procedure ML-SVMDT(Strain, Sval) returns tree

1: tree = ML-DT(Strain)

2: PruneByValidation(tree, Sval)

3: BuildLocalModels(tree, Sval)

4: return tree

Fig. 1. The procedure of building the ML-SVMDT.

using the subset of the validation dataset (Sval) that reached the leaf where the

corresponding local model is located. If the local model error is smaller than the

leaf error in a corresponding leaf, the examples from the training and validation

datasets are joined first (line 7 on Figure 4), and then the leaf is replaced with the

local model that is learned on the joined dataset. The last step (learning of the

local models on the joined training and validation datasets) is employed in order

to increase the predictive performance of the local models. The validation dataset

is usually held out from the training dataset, so its examples are actually a part

of the training dataset. The predictive performance should increase, as a result of

learning the local models on the extended training subsets with examples that have

similar properties to the original training examples.

Instead of using local models in every leaf of the tree, the local models in our

architecture are employed only in the leaves where they showed lower error than the

corresponding leaf of the decision tree in the validation phase. This means that not

all leaves of the tree are replaced by local SVM models. Because of that, we expect

the computational complexity of the architecture to be reduced in the prediction

phase, as a result of the higher computational efficiency of the decision trees as

compared to the SVM models.

The fundamental aspect of the pruning algorithm and the integration of the

local SVM models in the decision tree is the error estimation (line 4 on Figure

3 and line 6 on Figure 4). The error depends on the loss-function used. Different

loss-functions can be used for multi-label classification or multi-label ranking such

as Hamming loss, Ranking loss, Accuracy, Coverage, etc., depending on the type of

the problem that has to be solved.

Figure 5 shows an example of the ML-SVMDT architecture. The decision tree in

the example is built according to the features f1 and f2. After splitting the dataset

and pruning the tree, at the second level of the left subtree the local SVM model

LSVM-2 is learned. In the left subtree of the second node (f2<6), another split

is made using the feature f1 (f1<1) at the third level, resulting in another local

SVM model (LSVM-1) and one leaf without a local SVM model (a leaf with a

direct prediction). Similarly, in the right subtree the local SVM models LSVM-3

and LSVM-4 are learned. The squares, the circles, the crosses and the x-signs in

the same Figure represent the distribution of the labels in the whole dataset. In

combination with the separating lines, they represent the distribution of the labels
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procedure ML-DT(Strain) returns tree

1: (f∗, g∗,P∗) = BestFeature(Strain)

2: if f∗ 6= none then

3: for each Straink ∈ P∗ do

4: treek = ML-SVMDT(Straink )

5: return node(f∗, Strain,
⋃
k{treek})

6: else

7: return leaf(Strain)

procedure BestFeature(S)

1: (f∗, g∗,P∗) = (none, 0, ∅)
2: for each feature f do

3: P = partition induced by f on S

4: g = E(S)−
∑
Sk∈P

|Sk|
|S| E(Sk)

5: if (g > g∗) ∧Acceptable(P) then

6: (f∗, g∗,P∗) = (f, g,P)

7: return (f∗, g∗,P∗)

Fig. 2. The procedure of building the decision tree for multi-label classification.

procedure PruneByValidation(tree, Sval)

1: if tree is not leaf then

2: for each descendent k do

3: PruneByValidation(treek, S
val
k )

4: if LeafError(tree, Sval) ≤ TreeError(tree, Sval) then

5: tree = leaf(tree.Strain)

Fig. 3. The process of validation-based post-pruning of the ML-SVMDT.

procedure BuildLocalModels(tree, Sval)

1: if tree is not leaf then

2: for each descendent k do

3: BuildLocalModels(treek, Svalk )

4: else

5: localSVM = TrainLocalModel(tree.Strain)

6: if LocalModelError(localSVM , Sval) < LeafError(tree, Sval) then

7: S = tree.Strain ∪ Sval
8: localSVM = TrainLocalModel(S)

9: tree = replaceNode(localSVM)

Fig. 4. The process of building of the local SVM models.

in the subsets (local datasets).

3.2. Two modifications of ML-SVMDT

In order to explore deeper the feasibility of the combination of the ML-C4.5 method

and the local SVM models, two additional modifications of the ML-SVMDT archi-

tecture are proposed. The proposed modifications differ only in the second (prun-

ing) and the third phase (integration of local SVM models), while the first phase

(building the decision tree) is the same. The first modified architecture reffered to
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f1<3

f2<6

LSVM-2f1<1

f2<5

f1<6

LSVM-1 LSVM-4

LSVM-3

f1<3

f2<6

f1<1

f2<5

f1<6

LSVM-1

LSVM-2

LSVM-3

LSVM-4

direct prediction direct prediction

Fig. 5. ML-SVMDT splits the original dataset into subsets and builds a local SVM model (LSVM)
for some partitions

as ML-SVMDTpre
47 does not include the pruning phase and employs the binary

relevance architecture in each leaf of the decision tree, except in the leaves where

all training examples are labelled with the same set of labels.

The second modification introduces a different pruning method as compared to

the original ML-SVMDT architecture. Instead of using a validation dataset in the

pruning phase, it uses subtree raising with a pruning confidence 46 as a pruning

strategy. Similarly to ML-SVMDTpre, after the pruning of the decision tree, it

employees the binary relevance architecture with SVMs as base classifiers for solving

local classification problems in the leaves of the decision tree. This modification is

referred to as hybrid architecture with post-pruned decision tree (ML-SVMDTpost).
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3.3. The computational complexity of ML-SVMDT

In this subsection, we analyse the computational complexity of the proposed method

in comparison to the BR method. We first introduce the notation and then analyse

the training and testing computational complexities separately.

The notation used in the analysis is: V is the number of leaves in the tree, d is

the dimension of the input data (total number of descriptive attributes), while M

is the number of continuous attributes. N represents the total number of training

examples, while N i represents the number of examples in the i-th leaf. Nsv is the

number of support vectors in the global BR architecture (BR learned on the original

non-split classification problem), while N i
sv is the number of support vectors of the

local SVM classifier in the i-th leaf.

3.3.1. Training computational complexity

It can be expected that the computational efficiency of the BR method will be

improved as a result of splitting the original problem by the decision tree into

smaller subproblems and as a result of introducing a local model for solving each

of those subproblems. Each local model is learned with the examples that belong

to one subset only and have smaller number of support vectors resulting in higher

speed in the prediction phase.

The computational complexity in the training phase of the BR method accord-

ing to Burges 48 and Bottou 49 depends on the examples in the training dataset,

the dimension of the input data and on the number and the distribution of the

support vectors determined in the learning process. In the case where most support

vectors are not at the upper bound and Nsv/N � 1, the computational complexity

is O(Nsv
3 +Nsv

2N + dNsvN). If instead Nsv/N ≈ 1, then the computational com-

plexity is O(Nsv
3 +NsvN +dNsvN). For the case where most SVs are at the upper

bound and Nsv/N � 1, the computational complexity is O(Nsv
2 + dNsvN). Fi-

nally, if most SVs are at the upper bound and Nsv/N ≈ 1, then the computational

complexity is O(dN2).

The computational complexity in the training phase of ML-SVMDT can be

defined as a sum of the computational complexity of the ML-C4.5 method and the

computational complexity of the local BR classifiers. The construction of the tree

has three parts that contribute to the computational complexity of the tree learning

algorithm described in the previous subsection. These parts are executed at each

node in the tree and they include: sorting of the values of the numeric descriptive

attributes (features), calculating the best split and applying the split to the training

examples. Sorting a single descriptive attribute costs O(NlogN), thus sorting all

numeric descriptive attributes costs O(MNlogN). The cost of passing all examples

and calculating the needed statistics for all descriptive attributes isO(dN). Splitting

the examples into the respective nodes costs O(N). To sum up, the computational

complexity to creating a node in the tree is O(MNlogN) + O(dN) + O(N). If

we assume that the tree is balanced and bushy as in 50, the total computational
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complexity of tree construction is OML−C4.5 = O(MNlog2N) + O(dNlogN) +

O(NlogN). The upper bound of this cost is determined by the first term of the

overall computational complexity, i.e., O(MNlog2N).

The computational complexity of the local classifiers can be calculated simi-

larly to the global classifier. For the i-th local classifier, in the case where most

SVs are not at the upper bound and N i
sv/N

i � 1, the average computational

complexity is O(N i
sv

3
+N i

sv
2
N i + dN i

svN
i). If N i

sv/N
i ≈ 1, then the average com-

putational complexity would be O(N i
sv

3
+ N i

svN
i + dN i

svN
i). For the case where

most SVs are at the upper bound and N i
sv/N

i � 1, the computational complexity

is O(N i
sv

2
+ dN i

svN
i). If most SVs are at the upper bound and N i

sv/N
i ≈ 1, then

the computational complexity is O(dN i2). Different local classifiers could have dif-

ferent computational complexities (according to the previous statements) and that

depends on the local subproblems that should be solved. The total computational

complexity of the local classifiers is a sum of the complexities of all local classifiers

and it is same or higher order of the computational complexity of the decision tree.

In the worst case, the computational complexity of the proposed hybrid archi-

tecture is the same order as the computational complexity of the BR method. But,

it could be expected that the computational complexity of ML-SVMDT compared

to the computational complexity of BR should be lower for the number of leaves

in the decision tree as a result of the lower computational complexity of the local

subproblems that should be solved.

3.3.2. Testing computational complexity

The prediction phase of an example starts at the root of the tree. The decision tree

transfers the example to exactly one leaf of the tree according to its features. The

final decision about the labelling of the example is performed either by the leaf itself

or by the local model consisting of SVMs in the corresponding leaf. Each example,

in order to be classified consults at most one local model. Because each local model

will deal with a localized subproblem, it can be anticipated that its computational

complexity will be quite low, so, it can be expected that the testing speed of the

architecture will also be improved. The testing time for each test example is the

sum of the time needed to sort the example through the decision tree and if the

corresponding leaf has a local model, the time needed for the local model to make

a decision.

The computational complexity in the testing phase of the BR method according

to Burges 48 and Bottou 49 for each test example is

OBR = O(TNsv) (2)

where T is parameter representing the number of operations required to evaluate

the kernel. For dot product and Gaussian kernels, T is proportional to the dimension

of the data vector d.
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In general, the computational complexity in the testing phase of the ML-

SVMDT for a test sample that traverses from the root to the i-th leaf can be

defined as a sum of the computational complexity of ML-C4.5 and the computa-

tional complexity of the local BR classifier in the i-th leaf:

OiML−SVMDT = O(hi) +O(TN i
sv) (3)

where hi is the lenght of the path to the i-th leaf in the tree and N i
sv is the number

of support vectors of the local SVM classifier in the i-th leaf. O(hi) represents the

computational complexity of the decisions in the nodes required for traversing the

test example from the root to the i-th leaf.

For an average test example, that has a equal probability to end up in any leaf

of the tree, the computational complexity of the ML-SVMDT will be:

OML−SVMDT = O(logN) +O(TN i
sv) (4)

where N i
sv = 1

V

i<V∑
i=0

N i
sv and logN represents the height of the tree presuming that

the decision tree is balanced and bushy. The upper bound of the computational

complexity of the ML-SVMDT is determined by the second term O(TN i
sv). If we

assume that Nsv = kN i
sv, one can conclude that the testing speed of the ML-

SVMDT is about k times higher than the testing speed of the binary relevance

method (equation 5):

OBR = k · OML−SVMDT (5)

The parameter k strongly depends on the number and distribution of the ex-

amples in the global classification problem and the number and distribution of the

examples in each local problem in the leaves. Statistically, presuming that the su-

port vectors are approximately evenly distributed through the local models, the

value of the parameter k can be expected to be proportional to the number of

leaves in the decision tree (V ). An additional speed up in the prediction phase can

be expected as a result of the absence of local models in some leaves of the tree

where direct prediction is performed.

4. Experiments

The goal of the experiments is to answer the following questions:

(1) Is the ML-SVMDT approach more accurate and efficient than its constituents

ML-C4.5 and BR?

(2) Does ML-SVMDT have better predictive performance than competing meth-

ods?
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(3) Does ML-SVMDT have better computational complexity than competing meth-

ods?

In order to answer these questions, we evaluate the predictive performance and

the computational complexity of the proposed and several competing methods on

a selection of multi-label datasets that vary in terms of problem domain, number

of labels and label cardinality. We first introduce the evaluation measures, then the

datasets with their relevant statistics. Following this, we review the experimental

methods compared, and setup employed. Finally we present the results.

4.1. Evaluation measures

Three example-based measures (Hamming loss, F1 score and subset accuracy),

four label-based measures (macro-averaged precision, macro-averaged recall, micro-

averaged precision and micro-averaged recall) and two ranking-based measure (one

error and average precision) 51 are used in this paper for evaluating the predictive

performance of the compared methods. In the definitions below, Yi denotes the set

of true labels of example xi and h(xi) denotes the set of predicted labels for the

same example. All definitions refer to the multi-label setting.

4.1.1. Example based measures

Hamming loss evaluates how many times an example-label pair is misclassified,

i.e., label not belonging to the example is predicted or a label belonging to the

example is not predicted. The smaller the value of hamming loss(h), the better

the performance. The performance is perfect when hamming loss(h) = 0. This

metric is defined as:

hamming loss(h) =
1

N

N∑
i=1

1

Q
|h(xi)∆Yi| (6)

where ∆ stands for the symmetric difference between two sets, N is the number of

examples and Q is the total number of possible class labels.

F1 score is the harmonic mean between precision and recall and is defined as:

F1 =
1

N

N∑
i=1

2× |h(xi) ∩ Yi|
|h(xi)|+ |Yi|

(7)

F1 is an example based metric and its value is an average over all examples in the

dataset. F1 reaches its best value at 1 and worst score at 0.

Subset accuracy or classification accuracy is defined as follows:

subset accuracy(h) =
1

N

N∑
i=1

I(h(xi) = Yi) (8)

where I(true) = 1 and I(false) = 0. This is a very strict evaluation measure as it

requires the predicted set of labels to be an exact match of the true set of labels.
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4.1.2. Label based measures

Macro precision (precision averaged across all labels) is defined as:

macro precision =
1

Q

Q∑
j=1

tpj
tpj + fpj

(9)

where tpj , fpj are the number of true positives and false positives for the label λj
considered as a binary class.

Macro recall (recall averaged across all labels) is defined as:

macro recall =
1

Q

Q∑
j=1

tpj
tpj + fnj

(10)

where tpj , fpj are defined as for the macro precision and fnj is the number of false

negatives for the label λj considered as a binary class.

Micro precision (precision averaged over all the example/label pairs) is defined

as:

micro precision =

∑Q
j=1 tpj∑Q

j=1 tpj +
∑Q
j=1 fpj

(11)

where tpj , fpj are defined as for macro precision.

Micro recall (recall averaged over all the example/label pairs) is defined as:

micro recall =

∑Q
j=1 tpj∑Q

j=1 tpj +
∑Q
j=1 fnj

(12)

where tpj and fnj are defined as for macro recall.

4.1.3. Ranking based measures

One error evaluates how many times the top-ranked label is not in the set of

relevant labels of the example. The metric one error(f) takes values between 0

and 1. The smaller the value of one error(f), the better the performance. This

evaluation metric is defined as:

one error(f) =
1

N

N∑
i=1

[[ [
arg max

λ∈Y
f(xi, λ)

]
/∈ Yi

]]
(13)

where λ ∈ L = {λ1, λ2, ..., λQ} and [[π]] equals 1 if π holds and 0 otherwise for

any predicate π. Note that, for single-label classification problems, the One Error

is identical to ordinary classification error.

Average Precision is the average fraction of labels ranked above an ac-

tual label λ ∈ Yi that actually are in Yi. The performance is perfect when
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avg precision(f) = 1; the larger the value of avg precision(f), the better the

performance. This measure is defined as:

avg precision(f) =
1

N

N∑
i=1

1

|Yi|
∑
λ∈Yi

|Li|
rankf (xi, λ)

(14)

where Li = {λ′|rankf (xi, λ
′) ≤ rankf (xi, λ), λ′ ∈ Yi} and rankf (xi, λ) maps the

outputs of f(xi, λ) for any λ ∈ L to {λ1, λ2, ..., λQ} so that f(xi, λm) > f(xi, λn)

implies rankf (xi, λm) < rankf (xi, λn).

4.2. Compared methods

The proposed architecture (ML-SVMDT) and its two modifications are compared

with nine state of the art approaches for multi-label learning. The proposed archi-

tecture for the pruning phase and the phase of integrating the local SVM models

with the decision tree uses a loss function that can be any performance evaluation

measure. In our experiments we use Hamming loss as a loss function. For easy ref-

erence, Table 1 lists all the compared methods used in the experiments, their types

and the relevant citations.

Table 1. Compared methods

name symbol type reference

Proposed hybrid architecture with
ML-SVMDTHL hybrid

Hamming loss as a loss function

Architecture with pre-pruning ML-SVMDTpre hybrid

Architecture with post-pruning ML-SVMDTpost hybrid

Binary relevance BR binary relevance 2

Chaining classifier CC binary relevance 18

Calibrated label ranking CLR pair-wise 24

QWeightedML QWML pair-wise 26

HOMER HOMER problem transformation 21

ML-C4.5 ML-C4.5 algorithm adaptation 11

PCT PCT algorithm adaptation 12

ML-kNN ML-kNN algorithm adaptation 3

RAKEL RAKEL ensemble 20

4.3. Datasets

Eleven different multi-label classification problems were addressed in our experi-

ments. The predictive performance in terms of the measures defined above and the
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training and testing times were recorded for every method for each classification

problem. The problems considered in the experiments include:

(1) image classification: scene 52 and corel5k 53;

(2) gene function classification: yeast 54;

(3) text classification: enron 55, medical 28, bibtex 39, delicious 21, bookmarks 39

and tmc2007 56;

(4) music classification: emotions 57;

(5) video classification: mediamill 58

The complete description of the datasets in terms of the number of training (#tr.e.)

and test (#t.e.) examples, the number of features (d), the total number of labels

(Q) and label cardinality (lc)
2 are shown in Table 2.

Table 2. Dataset description.

#tr.e. #t.e. d Q lc

emotions 391 202 72 6 1.87

scene 1211 1159 294 6 1.07

yeast 1500 917 103 14 4.24

medical 645 333 1449 45 1.25

enron 1123 579 1001 53 3.38

corel5k 4500 500 499 374 3.52

tmc2007 21519 7077 500 22 2.16

mediamill 30993 12914 120 101 4.38

bibtex 4880 2515 1836 159 2.40

delicious 12920 3185 500 983 19.02

bookmarks 60000 27856 2150 208 2.03

We strived to include a considerable variety and scale of multi-label datasets.

In total we use eleven datasets, with dimensions ranging from 6 to 983 labels, and

from less than 1,000 examples to almost 90,000. The datasets are roughly ordered

by complexity (#tr.e. × d × Q) and divided in two groups denoted as regular size

and large size datasets.

4.4. Experimental setup

The comparison of the multi-label learning methods was performed using the im-

plementations in the following machine learning systems: the MULANa 59 library

under the machine learning framework WEKA 60, the MEKAb extension for the

ahttp://mulan.sourceforge.net/
bhttp://meka.sourceforge.net/
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WEKA framework and CLUSc system for predictive clustering. The MULAN li-

brary was used for BR, CLR, QWML, HOMER, ML-C4.5, ML-kNN and RAkEL,

while the MEKA environment was used for CC and the CLUS system for PCT. All

experiments were performed on a server with an Intel Xeon processor at 2.50GHz

with 64GB of RAM under the Fedora 14 operating system. In the remainder of this

section, we first state the base classifiers that were used for the multi-label methods

and then the parameter instantiations of the methods.

4.4.1. Base classifiers

The LIBSVM library 61, and in particular SVMs with a radial basis kernel, were

used for solving the partial binary classification problems for all datasets in all

problem transformation methods. The kernel parameter gamma and the penalty

C, for each combination of dataset and method, were determined by 10-fold cross

validation using only the training sets. The exception to this is the ensemble method

RAkEL, where the kernel parameter gamma and the penalty C were determined by

5-fold cross validation for the tmc2007 and mediamill datasets because of the com-

putational complexity. The values 2−15, 2−13, ..., 21, 23 were considered for gamma

and 2−5, 2−3, ..., 213, 215 for the penalty C. After determining the best parameters

values for each method on every dataset, the classifiers were trained using all avail-

able training examples and were evaluated by recognizing all test examples from

the corresponding dataset.

4.4.2. Parameter instantiation

The parameters of the methods were instantiated following the recommendations

from the literature. In particular, for the ensemble method (RAkEL) the number

of models was set to min(2 ·Q, 100) (Q is the number of labels) for all datasets 20,

except for the mediamill, delicious and bookmarks datasets, where this parameter

was set to 10 due to the memory requirements of this method. Besides the num-

ber of base classifiers, RAkEL requires one additional parameter: the size of the

label-sets k. For each dataset, this parameter was set to half the number of labels

(Q/2). Tsoumakas et al. 20 and Read et al. 28 have shown that this is a reasonable

choice, since it provides a balance between computational complexity and predictive

performance.

The proposed method uses one quarter of the training examples for validation,

while the remaining examples are used for building the decision tree. The ML-C4.5

and ML-SVMDTpost methods use subtree raising 46 as a post-pruning strategy with

a pruning confidence set to 0.25. For the ML-SVMDTpre method we considered

six different values (30-80) for the minimal number of examples in the leaves of

the decision tree. PCTs use a pre-pruning strategy that employs the F-test to

chttp://clus.sourceforge.net
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determine whether a given split results in a significant reduction of variance. The

significance level for the F-test was automatically selected from a predefined list of

significance levels using 3-fold cross-validation. The number of neighbours in the

ML-kNN method for each dataset was determined from the values 6 to 20 with step

2. HOMER also requires one additional parameter to be configured: the number

of clusters. For this parameter, five different values (2-6) were considered in the

experiments 21.

5. Results and discussion

In this section, we present the results from the experimental evaluation. The results

achieved in the experiments on the regular datasets are shown first, followed by

the results obtained on the large datasets. For each type of evaluation measure

(Hamming loss, F1 score, subset accuracy, micro precision, micro recall, macro

precision, macro recall, one error and average precision), we present table(s) with

results (Tables 3 to 5 and Tables 8 to 10). The training and testing times of each

method on each of the datasets measured in seconds, are given in Table 6 and Table

11. The training time of the ML-kNN method is the time needed for calculating the

posterior probabilities of the labels in the multi-label classification problems. For

all methods, the best results are shown, achieved by selecting the optimal values

for the corresponding parameters following the experimental setup explained in

Section 4.4. The first column of the tables lists the evaluation measures, while the

second column lists the classification problems. The remaining columns show the

performance of each method for every dataset. The best results per dataset are

shown in boldface.

For some of the large datasets, several algorithms did not manage to construct a

predictive model within one week under the available resources. These occurrences

are marked as DNF (Did Not Finish) in the tables with the results.

5.1. Results on regular datasets

Tables 3 to 6 give the performance figures for each method on each of the regular

datasets measured in terms of the performance measures introduced in section 4.1,

as well as the training and the testing times. In addition, Table 7 presents a statis-

tic about the number of the leaves and local SVM models in the ML-SVMDTHL

architecture for the regular datasets. The results in Tables 3 to 6 clearly show that

among the twelve tested approaches, the proposed method ML-SVMDTHL and its

modifications (ML-SVMDTpre and ML-SVMDTpost) offer better or show compara-

ble predictive performance as compared to the other algorithms, for almost every

evaluation measure.

Tables 3 and 5 clearly show that the ML-C4.5 gives the best results for the

smallest dataset (emotions) for the example and ranking based measures. For the

second smallest dataset (scene), the ensemble method (RAKEL) achieved the best

performance for all but the average precision evaluation measure.
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In terms of the Hamming loss evaluation measure ML-SVMDTHL shows bet-

ter predictive performance, than all the other competing methods in four out of

five multi-label classification problems. For the second and third example based

measures (F1 score and subset accuracy), the best performance is achieved by ML-

SVMDTHL and HOMER.

For the label-based evaluation measures (micro and macro precision), SVM

based approaches (BR, our proposed architecture and CC) achieved better overall

results than the other competing methods. In terms of the recall-based evaluation

measures (micro and macro recall), HOMER is best for all but the medical dataset.

The best performance in terms of the ranking based evaluation measures is shown

by the binary methods (BR, CC and CLR) and the proposed hybrid method ML-

SVMDTHL.

Overall, the performance of ML-SVMDTHL is always in the top four, compared

to the competing methods in terms of the all evaluation measures for all regular

datasets. It is interesting to note, that the proposed method almost always outper-

forms its constituents (BR and ML-C4.5) or shows very similar results to the better

one.

As expected, PCT, ML-C4.5 and ML-kNN are the fastest methods in the train-

ing phase. ML-SVMDTpre and ML-SVMDTpost have shorter training times com-

pared to the other methods, while ML-SVMDTHL has slightly longer training time

as a result of the validation in the post pruning phase. In the testing phase, the pro-

posed method achieve comparable testing times to ML-kNN and outperforms the

other competing methods, except the PCT and ML-C4.5 methods that achieved the

best testing times for all regular datasets. ML-SVMDTHL is slightly faster in the

testing phase than ML-SVMDTpre and ML-SVMDTpost as a result of the absence

of the local models in some leaves of the tree.

Although the predictive performances of the different methods on the regular

size datasets are not that different, the training and testing times of the compared

methods are spread over more than two orders of magnitude. ML-SVMDTHL train-

ing and testing times are only slower than PCT, ML-C4.5 and ML-kNN (fastest but

with worst predictive overall performance), while showing predictive performance

that is very similar to, and often better than the other methods.

5.2. Results on large datasets

Tables 8 to 11 give the performance figures for each method on each of the large

datasets measured in terms of the performance measures introduced in section 4.1,

as well as the training and the testing times. Table 12 shows the number of leaves

and local SVM models in the ML-SVMDT architecture for the large datasets.

In this subsection, we discuss the computational efficiency of the compared

methods first, and then we analyse their predictive performances. Overall, the pro-

posed method (ML-SVMDTHL) is 1.2 to 30 times faster in the training phase and

1.4 to 30 times faster in the testing phase than the HOMER method. The computa-
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Table 3. The performance of the multi-label classification approaches on the regular datasets in

terms of the examples-based measures.
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M
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emotions 0.247 0.254 0.257 0.257 0.256 0.257 0.254 0.361 0.247 0.267 0.294 0.282
scene 0.077 0.097 0.099 0.079 0.082 0.080 0.081 0.082 0.141 0.129 0.099 0.077
yeast 0.190 0.205 0.204 0.190 0.193 0.190 0.191 0.207 0.234 0.219 0.198 0.192
medical 0.011 0.011 0.011 0.011 0.011 0.017 0.012 0.012 0.013 0.023 0.017 0.012
enron 0.046 0.049 0.050 0.045 0.064 0.048 0.048 0.051 0.053 0.058 0.051 0.045
avg. rank 1.4 5.4 6.2 2.4 6 5 4.4 8.4 8.8 10.8 9 4.6
emotions 0.614 0.563 0.545 0.469 0.461 0.465 0.481 0.614 0.651 0.554 0.431 0.525
scene 0.714 0.661 0.655 0.714 0.742 0.713 0.710 0.745 0.587 0.551 0.658 0.754
yeast 0.623 0.634 0.638 0.650 0.657 0.655 0.654 0.687 0.614 0.578 0.628 0.661
medical 0.779 0.775 0.781 0.744 0.745 0.742 0.745 0.761 0.768 0.253 0.560 0.704
enron 0.602 0.563 0.556 0.582 0.484 0.600 0.525 0.613 0.546 0.295 0.445 0.564
avg. rank 4 5.8 6.2 6.2 6.6 6.4 7 2.2 7 10.6 10.4 5
emotions 0.183 0.178 0.198 0.129 0.124 0.144 0.149 0.163 0.277 0.223 0.084 0.208
scene 0.639 0.590 0.585 0.639 0.685 0.633 0.630 0.661 0.533 0.509 0.573 0.694
yeast 0.168 0.165 0.166 0.190 0.239 0.195 0.192 0.213 0.158 0.152 0.159 0.201
medical 0.655 0.643 0.655 0.630 0.621 0.486 0.480 0.610 0.646 0.177 0.462 0.607
enron 0.145 0.140 0.138 0.149 0.000 0.117 0.097 0.145 0.140 0.002 0.062 0.136
avg. rank 3.8 6.2 5.6 6.4 7.4 6.8 7.4 3.8 6 9.4 10.2 4
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tional efficiency of ML-SVMDTHL when compared to the BR and the CC methods

is even higher (1.2 to 42 times in the training phase and 3 to 40 times in the testing

phase). The other competing methods, except ML-kNN, show even higher training

and testing times than the binary relevance methods (BR and CC). The pairwise

methods (CLR and QWML) could not be learned within the training time frame

with the two most complex datasets (delicious and bookmarks), while the ensem-

ble method (RAKEL) was learned only for the corel5k, tmc2007 and mediamill

datasets. Also, the learning phase of HOMER did not finish for the bookmarks

dataset within one week under the available resources. Because of that the testing

phase for these methods was not performed at all for the corresponding datasets.

As expected, ML-SVMDTpre and ML-SVMDTpost are slightly faster in the

training phase compared to ML-SVMDTHL, while in the testing phase these two

modifications are slower. PCT and ML-C4.5 are faster than ML-SVMDTHL in the

training phase and they are the fastest in the testing phase for all datasets. It

is interesting to note that ML-SVMDTpre shows shorter training times compared

to ML-C4.5 for the corel5k and delicious datasets (the datasets with the largest

number of labels), as a result of the post-pruning method used in the ML-C4.5

algorithm that adds to its computational complexity in the training phase. On

the other hand, ML-SVMDTpre uses only the minimal number of examples in the

leaves of the tree that controls the size of the tree - after a node reaches the mini-

mal number of examples, no further branching of the decision tree is allowed. The
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Table 4. The performance of the multi-label classification approaches on the regular datasets in

terms of the label-based measures.
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emotions 0.683 0.634 0.628 0.684 0.698 0.685 0.680 0.471 0.607 0.607 0.584 0.586
scene 0.843 0.787 0.782 0.843 0.814 0.835 0.832 0.804 0.619 0.512 0.691 0.831
yeast 0.738 0.695 0.698 0.733 0.726 0.729 0.727 0.647 0.618 0.698 0.736 0.720
medical 0.843 0.834 0.830 0.858 0.851 0.669 0.667 0.807 0.796 0.826 0.807 0.881
enron 0.669 0.668 0.657 0.721 0.492 0.652 0.687 0.597 0.613 0.601 0.684 0.743
avg. rank 3 7 7.4 2.2 5.6 5.6 5.8 9.8 10 9 7 4.8
emotions 0.654 0.625 0.596 0.721 0.581 0.677 0.660 0.464 0.602 0.628 0.518 0.547
scene 0.844 0.785 0.777 0.844 0.817 0.835 0.832 0.807 0.635 0.682 0.784 0.835
yeast 0.559 0.515 0.545 0.628 0.602 0.614 0.614 0.471 0.377 0.479 0.600 0.480
medical 0.364 0.379 0.320 0.410 0.395 0.288 0.285 0.287 0.263 0.018 0.267 0.269
enron 0.246 0.266 0.307 0.258 0.260 0.205 0.242 0.241 0.142 0.023 0.170 0.222
avg. rank 4 5.4 6.2 1.6 4.8 4.4 4.8 8.8 10.6 10 9 7.8
emotions 0.562 0.539 0.534 0.406 0.393 0.409 0.414 0.782 0.712 0.539 0.376 0.489
scene 0.698 0.638 0.631 0.694 0.708 0.695 0.687 0.727 0.570 0.521 0.634 0.721
yeast 0.587 0.577 0.579 0.587 0.588 0.595 0.595 0.702 0.603 0.492 0.543 0.602
medical 0.730 0.735 0.738 0.725 0.727 0.782 0.830 0.742 0.720 0.227 0.522 0.600
enron 0.529 0.457 0.457 0.464 0.472 0.532 0.541 0.585 0.440 0.246 0.353 0.435
avg. rank 4.8 6.8 7.2 7.4 6.4 4.6 4.4 1.4 6.6 10.4 10.8 6.4
emotions 0.556 0.511 0.503 0.378 0.364 0.381 0.398 0.775 0.702 0.533 0.334 0.462
scene 0.703 0.646 0.639 0.703 0.716 0.704 0.701 0.734 0.573 0.529 0.647 0.727
yeast 0.343 0.344 0.348 0.355 0.357 0.361 0.361 0.466 0.375 0.269 0.308 0.352
medical 0.323 0.313 0.339 0.423 0.428 0.307 0.324 0.282 0.249 0.022 0.163 0.183
enron 0.128 0.119 0.130 0.120 0.146 0.139 0.120 0.163 0.107 0.030 0.075 0.097
avg. rank 5.6 7.4 6.2 5.8 4.4 5.2 5.6 2.4 6.6 10.4 10.6 7.2
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Table 5. The performance of the multi-label classification approaches on the regular datasets in

terms of the ranking-based measures.

Dataset M
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emotions 0.376 0.371 0.396 0.386 0.376 0.391 0.391 0.411 0.347 0.386 0.406 0.396
scene 0.180 0.259 0.259 0.180 0.204 0.190 0.193 0.216 0.394 0.389 0.242 0.197
yeast 0.267 0.253 0.246 0.236 0.268 0.229 0.233 0.248 0.312 0.264 0.234 0.254
medical 0.153 0.156 0.162 0.138 0.138 0.168 0.165 0.216 0.198 0.612 0.279 0.312
enron 0.237 0.264 0.273 0.237 0.238 0.231 0.269 0.314 0.309 0.392 0.280 0.290
avg. rank 3.8 5.4 7 2.6 5 3.8 5 9 8.6 9.8 8 8.4
emotions 0.721 0.747 0.742 0.721 0.724 0.718 0.679 0.698 0.759 0.713 0.694 0.713
scene 0.893 0.843 0.840 0.893 0.881 0.886 0.864 0.848 0.751 0.745 0.851 0.862
yeast 0.760 0.746 0.749 0.768 0.755 0.768 0.698 0.740 0.706 0.724 0.758 0.715
medical 0.872 0.872 0.871 0.893 0.893 0.864 0.862 0.786 0.823 0.522 0.784 0.676
enron 0.681 0.668 0.658 0.693 0.695 0.699 0.604 0.604 0.629 0.546 0.635 0.522
avg. rank 3.2 5.2 6 2.2 3.2 3.6 9 8.8 7.8 10.4 7.8 9.4
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Table 6. The training and the testing times of the multi-label classification approaches on the

regular datasets measured in seconds.

Dataset M
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M
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R
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emotions 4.0 2.0 2.0 4.0 6.0 10.0 10.0 4.0 0.3 0.1 0.4 5.0
scene 29.0 25.0 25.0 71.0 99.0 195.0 195.0 68.0 8.0 2.0 14.0 79.0
yeast 86.0 42.0 49.0 145.0 206.0 672.0 672.0 101.0 14.0 1.5 8.2 157.0
medical 14.0 8.0 8.0 18.0 28.0 40.0 40.0 16.0 3.0 0.6 1.0 82.0
enron 97.0 77.0 70.0 318.0 440.0 971.0 971.0 158.0 15.0 1.1 6.0 493.0
avg. rank 6 4.2 4.2 7.6 9.6 10.8 10.8 6.8 2.6 1 2.4 9.8
emotions 0.4 0.6 0.6 1.0 1.0 3.0 2.0 1.0 0.0 0.0 0.4 2.0
scene 8.0 12.0 13.0 25.0 25.0 87.0 40.0 21.0 1.0 0.0 14.0 72.0
yeast 4.0 10.0 11.0 23.0 25.0 153.0 64.0 17.0 0.1 0.0 5.0 70.0
medical 0.7 1.8 1.7 4.0 6.0 90.0 25.0 1.5 0.1 0.0 0.2 24.0
enron 7.0 18.0 16.0 50.0 53.0 634.0 174.0 22.0 0.2 0.0 3.0 153.0
avg. rank 3.4 5.4 5.4 7.8 8.4 12 10.4 6.6 1.8 1 3.8 10.4
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Table 7. Number of leaves and local SVMs in the ML-SVMDT architecture for the regular datasets.

emotions scene yeast medical enron
Number of leaves 15 37 22 11 41
Numer of local models 8 20 7 6 21

ML-SVMDTHL

training and testing times of ML-kNN are comparable to the proposed method, but

the predictive performance of ML-kNN is almost always lower than the predictive

performance of ML-SVMDTHL.

Overall, it can be noted that four groups of algorithms are clearly separated in

terms of time efficiency. The first group contains the decision tree based methods

(PCT and ML-C4.5). The second contains the proposed method and its modifi-

cations and the algorithm adaptation method ML-kNN. The third group contains

the binary methods BR and CC, and the HOMER method. The pair-wise meth-

ods CLR and QWML and the ensemble method RAKEL are members of the last

group. The ML-C4.5 and PCT (first group) have significantly higher computational

efficiency as compared to the methods of the other three groups, but they show sig-

nificantly lower predictive performance in terms of all evaluation measures. The

methods of the second group show significantly higher computational efficiency,

but similar predictive performance to the methods of the third group. Methods of

the fourth group have the lowest computational efficiency. They have also showed

worse predictive performance than methods of the second and the third group.

As the complexity of the classification problems increases, the grouping of the

methods becomes even more evident, which is visually presented on Figures 6, 7
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Table 8. The performance of the multi-label classification approaches on the large datasets in

terms of the examples-based measures.

Dataset M
L

-S
V

M
D

T
H

L

M
L

-S
V

M
D

T
pr

e

M
L

-S
V

M
D

T
po

st

B
R

C
C

C
L

R

Q
W

M
L

H
O

M
E

R

M
L

-C
4.

5

PC
T

M
L

-k
N

N

R
A

kE
L

corel5k 0.009 0.009 0.009 0.017 0.017 0.012 0.012 0.012 0.010 0.009 0.009 0.009
tmc2007 0.013 0.011 0.011 0.013 0.013 0.014 0.014 0.015 0.093 0.075 0.058 0.021
mediamill 0.030 0.032 0.032 0.032 0.032 0.043 0.043 0.038 0.044 0.034 0.031 0.035
bibtex 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.014 0.016 0.014 0.014 DNF
delicious 0.017 0.018 0.018 0.018 0.018 DNF DNF 0.022 0.019 0.019 0.018 DNF
bookmarks 0.008 0.009 0.009 DNF DNF DNF DNF DNF 0.009 0.009 0.009 DNF
avg. rank 1.3 1.8 1.8 4.7 4.7 7.2 7.2 8.2 8.5 6.0 4.2 7.8
corel5k 0.145 0.076 0.079 0.047 0.048 0.293 0.292 0.280 0.003 0.000 0.021 0.000
tmc2007 0.936 0.949 0.949 0.934 0.939 0.933 0.933 0.934 0.126 0.554 0.699 0.904
mediamill 0.562 0.557 0.556 0.557 0.539 0.134 0.135 0.579 0.054 0.490 0.570 0.471
bibtex 0.438 0.390 0.400 0.433 0.434 0.417 0.421 0.426 0.117 0.069 0.174 DNF
delicious 0.322 0.240 0.240 0.230 0.225 DNF DNF 0.343 0.001 0.001 0.017 DNF
bookmarks 0.262 0.262 0.267 DNF DNF DNF DNF DNF 0.257 0.135 0.213 DNF
avg. rank 2.7 4 3.8 5.3 5.3 7 6.8 3.5 9.3 9.2 7 9.7
corel5k 0.008 0.008 0.008 0.000 0.000 0.010 0.012 0.002 0.000 0.000 0.000 0.000
tmc2007 0.776 0.796 0.802 0.772 0.787 0.767 0.768 0.765 0.078 0.215 0.305 0.734
mediamill 0.092 0.091 0.091 0.080 0.080 0.044 0.044 0.053 0.049 0.065 0.110 0.060
bibtex 0.183 0.179 0.179 0.194 0.202 0.183 0.186 0.165 0.095 0.004 0.056 DNF
delicious 0.002 0.004 0.005 0.004 0.006 DNF DNF 0.001 0.001 0.001 0.003 DNF
bookmarks 0.205 0.210 0.215 DNF DNF DNF DNF DNF 0.209 0.129 0.187 DNF
avg. rank 3.8 3.2 2.7 4.8 4.0 6.8 6.3 7.5 8.0 8.2 6.3 8.8
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and 8. The figures show the relationship between the training and testing times

and the predictive performance of the competing methods for Hamming loss, F1

score and micro recall evaluation measures for mediamill, tmc2007 (the two most

complex datasets, for which all methods have managed to build a model), and the

bibtex dataset (for which, the predictions of the RAkEL method are only missing).

Very similar relationships can be observed for the other evaluation measures and

datasets.

The scatter plots on Figures 6 to 8 present the superiority of the proposed

method that is always positioned near the top of the y axes (higher performance

evaluation measure) and having only the much less accurate methods on its left

side. The methods that are positioned on its right side show comparable predictive

performance, but are an order of magnitude slower.

6. Conclusions

We propose a novel hybrid architecture that integrates Decision Trees and Support

Vector Machines for computationally efficient multi-label learning. The architecture

combines the algorithm adaptation method ML-C4.5 and the problem transforma-

tion method Binary Relevance, that uses SVMs as base classifiers for solving the
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Table 9. The performance of the multi-label classification approaches on the large datasets in

terms of the label-based measures.
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corel5k 0.698 0.664 0.662 0.061 0.061 0.338 0.339 0.308 0.160 0.000 0.730 0.000
tmc2007 0.942 0.947 0.951 0.947 0.948 0.940 0.941 0.922 0.940 0.689 0.757 0.938
mediamill 0.755 0.749 0.745 0.742 0.753 0.582 0.580 0.569 0.597 0.743 0.739 0.725
bibtex 0.787 0.789 0.764 0.753 0.744 0.734 0.736 0.547 0.359 1.000 0.819 DNF
delicious 0.692 0.662 0.641 0.658 0.660 DNF DNF 0.396 0.000 0.000 0.651 DNF
bookmarks 0.798 0.855 0.755 DNF DNF DNF DNF DNF 0.632 0.947 0.850 DNF
avg. rank 2.8 2.7 4.2 5.8 5 7.8 7.5 8.8 8.2 6.3 4.8 9.2
corel5k 0.055 0.055 0.055 0.052 0.053 0.059 0.059 0.044 0.004 0.000 0.031 0.000
tmc2007 0.980 0.984 0.983 0.972 0.972 0.964 0.965 0.954 0.925 0.386 0.780 0.973
mediamill 0.261 0.258 0.201 0.112 0.144 0.140 0.133 0.107 0.046 0.401 0.308 0.025
bibtex 0.513 0.495 0.520 0.528 0.539 0.503 0.490 0.391 0.128 0.006 0.192 DNF
delicious 0.319 0.312 0.290 0.299 0.303 DNF DNF 0.154 0.000 0.000 0.134 DNF
bookmarks 0.526 0.485 0.485 DNF DNF DNF DNF DNF 0.292 0.018 0.414 DNF
avg. rank 2.5 3 3.3 5.7 4.7 6 6.3 8 9 8.2 7 9
corel5k 0.109 0.055 0.058 0.057 0.057 0.258 0.290 0.248 0.002 0.000 0.015 0.000
tmc2007 0.927 0.943 0.940 0.917 0.924 0.920 0.921 0.932 0.073 0.454 0.621 0.847
mediamill 0.428 0.416 0.411 0.415 0.385 0.066 0.429 0.537 0.004 0.351 0.432 0.315
bibtex 0.296 0.281 0.289 0.328 0.335 0.322 0.341 0.353 0.053 0.057 0.118 DNF
delicious 0.182 0.148 0.149 0.143 0.144 DNF DNF 0.297 0.000 0.000 0.101 DNF
bookmarks 0.176 0.170 0.178 DNF DNF DNF DNF DNF 0.170 0.135 0.135 DNF
avg. rank 3.7 4.8 4.2 6.2 5.7 6.7 4.5 2.7 9.3 9.0 7.0 9.5
corel5k 0.020 0.014 0.014 0.023 0.023 0.039 0.039 0.041 0.005 0.000 0.006 0.000
tmc2007 0.906 0.903 0.902 0.915 0.924 0.914 0.914 0.897 0.085 0.235 0.418 0.739
mediamill 0.062 0.060 0.061 0.049 0.044 0.028 0.028 0.074 0.002 0.029 0.088 0.020
bibtex 0.223 0.198 0.203 0.250 0.257 0.236 0.238 0.247 0.034 0.006 0.049 DNF
delicious 0.072 0.066 0.064 0.072 0.075 DNF DNF 0.103 0.000 0.000 0.039 DNF
bookmarks 0.095 0.103 0.111 DNF DNF DNF DNF DNF 0.098 0.016 0.070 DNF
avg. rank 4.5 5.5 5.3 4 3.7 5.7 5.5 3.7 9.2 9.2 6.8 9.7
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Training time micro Recall Testing time micro Recall
920.00 0.927 ML-SVMD2 5 18.0000 0.927 ML-SVMD3 3

888.00 0.943 ML-SVMD2 5 74.0000 0.943 ML-SVMD3 3

862.00 0.94 ML-SVMD2 5 65.0000 0.94 ML-SVMD3 3
42645.00 0.917 BR 2 5 927.0000 0.917 BR 3 3
46704 00 0 924 CC 2 5 891 0000 0 924 CC 3 346704.00 0.924 CC 2 5 891.0000 0.924 CC 3 3
52427.00 0.92 CLR 2 5 3282.0000 0.92 CLR 3 3
52427.00 0.921 QWML 2 5 1543.0000 0.921 QWML 3 3
31300.00 0.932 HOMER 2 5 730.0000 0.932 HOMER 3 3
469.00 0.073 ML-C4.5 2 5 1.7000 0.073 ML-C4.5 3 3
11.50 0.454 PCT 2 5 1.0000 0.454 PCT 3 3

737.00 0.621 ML-kNN 2 5 230.0000 0.621 ML-kNN 3 3
102394.00 0.847 RAkEL 2 5 10985.0000 0.847 RAkEL 3 3
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Fig. 6. The relationship between the training (left) and testing (right) times and the micro recall
performance of the competing methods on the tmc2007 dataset.

partial binary classification problems.

The proposed architecture and its two modifications are compared to nine state
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Table 10. The performance of the multi-label classification approaches on the large datasets in

terms of the ranking-based measures.
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L

corel5k 0.655 0.652 0.666 0.660 0.674 0.588 0.592 0.652 0.762 0.776 0.706 0.758
tmc2007 0.021 0.013 0.016 0.029 0.026 0.033 0.033 0.050 0.145 0.306 0.190 0.047
mediamill 0.180 0.183 0.184 0.188 0.193 0.586 0.560 0.219 0.194 0.220 0.182 0.234
bibtex 0.384 0.407 0.382 0.346 0.342 0.388 0.380 0.466 0.529 0.783 0.576 DNF
delicious 0.375 0.372 0.376 0.354 0.367 DNF DNF 0.509 0.411 0.592 0.416 DNF
bookmarks 0.599 0.594 0.577 DNF DNF DNF DNF DNF 0.643 0.817 0.639 DNF
avg. rank 3.5 3.2 3.8 4.3 4.7 7 6.5 7.2 8 9.8 7.2 9.5
corel5k 0.312 0.306 0.304 0.303 0.293 0.352 0.311 0.222 0.196 0.208 0.266 0.088
tmc2007 0.979 0.985 0.983 0.978 0.981 0.972 0.938 0.945 0.842 0.700 0.844 0.939
mediamill 0.703 0.698 0.697 0.686 0.672 0.450 0.492 0.583 0.669 0.654 0.703 0.492
bibtex 0.551 0.536 0.557 0.597 0.599 0.579 0.498 0.407 0.392 0.212 0.349 DNF
delicious 0.364 0.362 0.362 0.351 0.343 DNF DNF 0.231 0.321 0.206 0.326 DNF
bookmarks 0.420 0.421 0.435 DNF DNF DNF DNF DNF 0.378 0.213 0.381 DNF
avg. rank 2.7 3.0 3 4.8 4.8 6.5 7.7 8 8.3 9.3 6.5 9.8
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Table 11. The training and the testing times of the multi-label classification approaches on the

large datasets measured in seconds.

Dataset M
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corel5k 732.0 274.0 645.0 926.0 1225.0 2388.0 2388.0 771.0 369.0 30.0 389.0 3380.0
tmc2007 920.0 888.0 862.0 42645.0 46704.0 52427.0 52427.0 31300.0 469.0 11.5 737.0 102394.0
mediamill 10345.0 9015.0 10789.0 85468.0 100435.0 260156.0 260156.0 78195.0 2030.0 440.0 1094.0 33554.0
bibtex 1304.0 767.0 769.0 11013.0 12434.0 13424.0 13424.0 2896.0 566.0 16.4 124.0 DNF
delicious 1945.0 1168.0 1358.0 57053.0 84903.0 DNF DNF 21218.0 2738.0 70.0 236.0 DNF
bookmarks 160981.0 53737.0 137660.0 DNF DNF DNF DNF DNF 4039.0 965.0 15990.0 DNF
avg. rank 5.7 3.7 4.8 8 8.8 9.7 9.7 7.2 3.2 1 2.7 10.0
corel5k 8.0 9.0 14.0 25.0 31.0 2161.0 119.0 14.0 1.0 1.0 45.0 3613.0
tmc2007 18.0 74.0 65.0 927.0 891.0 3282.0 1543.0 730.0 1.7 0.0 230.0 10985.0
mediamill 353.0 398.0 470.0 6152.0 6125.0 76385.0 20317.0 6079.0 1.0 1.0 477.0 39001.0
bibtex 48.0 84.0 84.0 654.0 661.0 16733.0 4710.0 155.0 6.5 0.0 64.0 DNF
delicious 102.0 189.0 182.0 2045.0 1872.0 DNF DNF 816.0 19.0 10.0 55.0 DNF
bookmarks 1480.0 4189.0 8022.0 DNF DNF DNF DNF DNF 21.0 15.0 4084.0 DNF
avg. rank 3.2 4.8 5 8 8.2 10.2 9.3 6.7 1.7 1 5.3 10.5
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Table 12. Number of leaves and local SVM models in the ML-SVMDT architecture for the large
datasets.

corel5k tmc2007 mediamill bibtex delicious bookmarks
Number of leaves 23 38 61 24 44 130
Numer of local models 21 36 49 16 37 74

ML-SVMDTHL
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Training time HL Testing time HL
10345.00 0.03 ML-SVMDTHL 2 5 353.0000 0.0300 ML-SVMDTHL 3 3

9015.00 0.032 ML-SVMDTpre 2 5 398.0000 0.0320 ML-SVMDTpre 3 3

10789.00 0.032 ML-SVMDTpost 2 5 470.0000 0.0320 ML-SVMDTpost 3 3
85468.00 0.032 BR 2 5 6152.0000 0.0320 BR 3 3

100435 00 0 032 CC 2 5 6125 0000 0 0320 CC 3 3100435.00 0.032 CC 2 5 6125.0000 0.0320 CC 3 3
260156.00 0.043 CLR 2 5 76385.0000 0.0430 CLR 3 3
260156.00 0.043 QWML 2 5 20317.0000 0.0430 QWML 3 3
78195.00 0.038 HOMER 2 5 6079.0000 0.0380 HOMER 3 3
2030.00 0.044 ML-C4.5 2 5 1.0000 0.0440 ML-C4.5 3 3
440.00 0.034 PCT 2 5 1.0000 0.0340 PCT 3 3

1094.00 0.031 ML-kNN 2 5 477.0000 0.0310 ML-kNN 3 3
33554.00 0.035 RAkEL 2 5 39001.0000 0.0350 RAkEL 3 3
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Fig. 7. The relationship between the training (left) and testing (right) times and the Hamming
loss of the competing methods on the mediamill dataset.

Training timF1 Testing time F1
1304.00 0.438 ML-SVMD2 5 48.0000 0.438 ML-SVMD3 3

767.00 0.39 ML-SVMD2 5 84.0000 0.39 ML-SVMD3 3

769.00 0.4 ML-SVMD2 5 84.0000 0.4 ML-SVMD3 3
11013.00 0.433 BR 2 5 654.0000 0.433 BR 3 3
12434 00 0 434 CC 2 5 661 0000 0 434 CC 3 312434.00 0.434 CC 2 5 661.0000 0.434 CC 3 3
13424.00 0.417 CLR 2 5 16733.0000 0.417 CLR 3 3
13424.00 0.421 QWML 2 5 4710.0000 0.421 QWML 3 3
2896.00 0.426 HOMER 2 5 155.0000 0.426 HOMER 3 3
566.00 0.117 ML-C4.5 2 5 6.5000 0.117 ML-C4.5 3 3
16.40 0.069 PCT 2 5 1.0000 0.069 PCT 3 3

124.00 0.174 ML-kNN 2 5 64.0000 0.174 ML-kNN 3 3
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Fig. 8. The relationship between the training (left) and testing (right) times and the F1 score of

the competing methods on the bibtex dataset.

of the art multi-label methods (five problem transformation methods, three algo-

rithm adaptation methods and one ensemble method) on eleven different real-world

datasets separated in two groups according to their complexity.

Overall, the proposed architecture shows significantly smaller training and test-

ing times in comparison to the SVM-based methods. It offers better or shows com-

parable predictive performance in terms of the performance evaluation measures to

the best results achieved by the competing methods. Compared to the BR and CC

methods, ML-SVMDT architecture shows slightly better predictive performance,

but significantly higher computational efficiency, especially for the large datasets.

Also, the architecture outperforms the HOMER method in both training and test-

ing speed and ranking. In comparison to non SVM-based methods, ML-SVMDT

shows significantly better predictive performance than PCT, ML-C4.5 and ML-kNN

methods in terms of the nine evaluation measures, while showing higher training

and testing times. Compared to other methods, ML-SVMDT offers competitive

predictive performance and is efficient enough to scale up to very large problems.

Despite the above advantages, the method we proposed might perform below

expectation in a couple of situations. For example, on datasets that yield highly

imbalanced decision trees, the computational efficiency of our approach will be low,

but not lower than the efficiency of the baseline BR approach. Another drawback

of our method is its high memory consumption for large datasets: For the most

complex datasets (bibtex, bookmarks...), the process of training takes about 40GB
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of RAM for all local SVM models.

This leads us to the directions for further work. Our approach could be easily

parallelized. Besides speeding up the training process, this would reduce the memory

requirements.

Several other directions can also be followed. Statistical tests could be used to

decide whether further splitting makes sense, instead of using a post-pruning strat-

egy with validation. Different ensemble techniques such as random forest, bagging

or boosting can be introduced in order to improve the predictive performance of

the hybrid architecture.
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1. K. Brinker, J. Fürnkranz, and E. Hüllermeier, “A unified model for multilabel classi-
fication and ranking,” in Proc. of the 17th European Conference on Artificial Intelli-
gence, pp. 489–493, 2006.

2. G. Tsoumakas and I. Katakis, “Multi Label Classification: An Overview,” Interna-
tional Journal of Data Warehouse and Mining, vol. 3, no. 3, pp. 1–13, 2007.

3. M. L. Zhang and Z. H. Zhou, “Ml-knn: A lazy learning approach to multi-label learn-
ing,” Pattern Recognition, vol. 40, no. 7, pp. 2038–2048, 2007.

4. A. Wieczorkowska, P. Synak, and Z. Ras, “Multi-label classification of emotions in
music,” in Intelligent Information Processing and Web Mining, pp. 307–315, Springer
Berlin / Heidelberg, 2006.

5. E. Spyromitros, G. Tsoumakas, and I. Vlahavas, “An empirical study of lazy multi-
label classification algorithms,” in Proc. of the 5th Hellenic conference on Artificial
Intelligence: Theories, Models and Applications, pp. 401–406, 2008.

6. K. Crammer and Y. Singer, “A family of additive online algorithms for category
ranking,” Journal of Machine Learning Research, vol. 3, pp. 1025–1058, 2003.

7. M. L. Zhang and Z. H. Zhou, “Multi-label neural networks with applications to func-
tional genomics and text categorization,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 10, pp. 1338–1351, 2006.

8. R. E. Schapire and Y. Singer, “Boostexter: A boosting-based system for text catego-
rization,” Machine Learning, vol. 39, pp. 135–168, 2000.
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